Reliability-Based Topology Optimization Using Performance Measure Approach

성능함수법을 이용한 신뢰성기반 위상 최적설계

  • 안성호 (서울대학교 조선해양공학과) ;
  • 조선호 (서울대학교 조선해양공학과 및 RIMSE)
  • Received : 2009.08.13
  • Accepted : 2009.10.14
  • Published : 2010.02.28

Abstract

In this paper, a reliability-based design optimization is developed for the topology design of linear structures using a performance measure approach. Spatial domain is discretized using three dimensional Reissner-Mindlin plate elements and design variable is taken as the material property of each element. A continuum based adjoint variable method is employed for the efficient computation of sensitivity with respect to the design and random variables. The performance measure approach of RBDO is employed to evaluate the probabilistic constraints. The topology optimizationproblem is formulated to have probabilistic displacement constraints. The uncertainties such as material property and external loads are considered. Numerical examples show that the developed topology optimization method could effectively yield a reliable design, comparing with the other methods such as deterministic, safety factor, and worst case approaches.

본 논문에서는 선형 구조물에 대해 성능함수법을 이용하여 신뢰성기반 위상 최적설계 기법을 개발하였다. 구조물을 라이즈너-민들린(Ressiner-Mindlin) 판 요소로 분할하였으며, 각 요소의 재료 물성치를 설계변수로 사용하였다. 설계변수와 임의변수의 효율적인 설계민감도를 구하기 위하여 연속체 역학에 기초한 해석기법 중 보조변수법(Adjont variable method)을 사용하였다. 또한 확률론적 제약조건을 평가하기 위해서 성능함수법(Performance measure approach)을 사용하였으며 변위 제약조건을 두어 위상 최적설계 문제를 구성하였다. 이 때 재료 물성치와 하중을 불확실 변수로 고려하였으며 수치적 예제를 통하여 본 논문에서 제안한 최적설계 방법론을 기존의 결정론적 방법, 안전계수법(Safety factor approach), 최악조건법(Worst case approach) 등과 비교하여 그 타당성을 검증하였다.

Keywords

References

  1. Bae, K,, Wang, S. (2002) Reliability-Based Topology Optimization, Proceedings of 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, AIAA, pp.2002-5542.
  2. Cho, S., Jung, H.S. (2003) Design Sensitivity Analysis and Topology Optimization of Displacement-Loaded Nonlinear Structures, Computer Methods in Applied Mechanics and Engineering, 192, pp.2539-2553. https://doi.org/10.1016/S0045-7825(03)00274-3
  3. Choi, K.K., Kim, N.H. (2005) Structural Sensitivity Analysis and Optimization, Splinger, New York, pp.446.
  4. Haug, E.J., Choi, K.K., Komkov, V. (1986) Design Sensitivity Analysis of Structural Systems, Academic Press, New York.
  5. Jung, H.S., Cho, S. (2004) Reliability-Based Topology Optimization of Geometrically Nonlinear Structures with Loadign and Material Uncertainties, Finite Elements in Analysis and Design, 43, pp.311-331.
  6. Lee, J.O., Yang, Y.S., Ruy, W.S. (2002) A Comparative Study on Reliability-Index and Target-Performancebased Probabilistic Structural Design Optimization, Computers and Structures, 80, pp.257-269. https://doi.org/10.1016/S0045-7949(02)00006-8
  7. Maute, K., Frangopol, D.M. (2003) Reliability-based Design of MEMS Mechanisms by Topology Optimization. Computers and Structures, 81, pp.813-824. https://doi.org/10.1016/S0045-7949(03)00008-7
  8. Tu, J., Choi, K.K. (1997) A Performance Measure Approach in Reliability-Based Structural Optimization, Technical Report, R97-02, The University of Iowa.