Comparisons of Kinematical Analysis for the Universal-joint System by Using Finite Rotations and Quaternions

유한회전과 4원수를 이용한 유니버설 조인트 시스템의 기구해석 비교

  • 윤성호 (금오공과대학교 기계공학부)
  • Received : 2009.11.23
  • Accepted : 2010.02.09
  • Published : 2010.04.30

Abstract

This paper deals with the comparison of analysis methodologies by applying both Euler angle and quaternion to observe the kinematical behavior of the universal joint system used as an automotive drive-shaft. At first, conventional approaches are applied to predict a kinematical behavior by introducing only Euler angles into the universal joint system, but turns out to be lack in consistency and reliability of the analysis. Then to overcome this deficiency in numerical analysis a different methodology is proposed by using quaternion in this system. Its corresponding advantage is discussed in terms of kinetic energy, rotational velocity and rotational displacement. The application of quaternions in the numerical experiment is shown to be a more useful and valid way of establishing the ideal analytical model of the universal joint system.

본 논문에서는 자동차의 구동계 등에 사용되는 유니버설 조인트의 기구학적 거동을 관찰하기 위하여 오일러 각과 4원수(quaternion)를 적용한 두 가지 방법을 비교하였다. 이와 관련된 종래의 연구자들은 오일러 각을 사용하여 회전체의 동적인 거동을 해석하였으나 결과의 일관성과 정확도가 부족하였다. 유니버설 조인트 시스템 해석에서도 이러한 단점을 확인하였고 이를 극복하고자 4원수를 적용하였다. 구동시 원동축 1개축 회전과 원동축과 직각방향 회전축 2개의 축이 동시에 존재하는 경우에 대하여 수치해석을 통하여 기하학적인 물리량을 산출하였다. 4원수를 채용한 방법이 세차운동을 포함하는 2개축 회전에서 유니버설 조인트 시스템을 해석하는데 있어 더욱 유용한 방법임을 보여 주었다.

Keywords

References

  1. 박보용, 송창섭, 강효식 (1991) Universal Joint를 갖는 구동축 시스템의 비틀림 진동 감소를 위한 적정설계에 관한 연구, 한국정밀공학회지, 8(4), pp.137-145.
  2. 윤성호 (2008) 로터 시스템 회전운동의 정식화 및 해석, 한국전산구조공학회지, pp.475-482.
  3. Al-Bedoor, B.O. (1999) Dynamic Model of Coupled Shaft Torsional and Blade Bending Deformations in Rotors, Computer Methods in Applied Mechanics and Engineering, 169, pp.177-190. https://doi.org/10.1016/S0045-7825(98)00184-4
  4. Bayrakceken H., Tasgetiren S., Yavuz I. (2007) Two Cases of Failure in the Power Transmission System on Vehicles: A Universal Joint Yoke and a Drive Shaft, Engineering Failure Analysis, 14, pp.716-724. https://doi.org/10.1016/j.engfailanal.2006.03.003
  5. Dooley J.R., McCarthy J.M. (1991) Spatial Rigid Body Dynamics using Dual Quaternion Components, Preceedings of the IEEE International Conference on Robotics and Automation, Sacramento, CA, USA, pp.90-95.
  6. Fischer I.S., Freudenstein F. (1984) Internal Force and Moment Transmission in a Cardan Joint With Manufacturing Tolerances, Journal of Mechanisms Transmissions, and Automation in Design, 106, pp.301-311. https://doi.org/10.1115/1.3267412
  7. Geradin M., Cardona A. (2001) Flexible Multibody Dynamics, John Wiley and Sons, p.327.
  8. Haug E.J. (1989) Computer-Aided Kinematics and Dynamics of Mechanical Systems, Allyn and Bacon, p.498.
  9. Heyes A.M. (1998) Automotive Component Failures, Engineering Failure Analysis, 5, pp.129-141. https://doi.org/10.1016/S1350-6307(98)00010-7
  10. Hummel S.R. (2000) Configuration Design and Optimization of Universal Joints with Manufacturing Tolerances, Mechanism and Machine Theory, 35, pp.463-476. https://doi.org/10.1016/S0094-114X(98)00092-5
  11. Kato M., Ota H. Kim J.-R., Kato R. (1997) Unstable Vibration of a Rotating Shaft Driven Through a Universal Joint, The Korean Society of Mechanical Engineers Asia-Pacific Vibration Conference, November, Korea, pp.236-241.
  12. Mazzei A.J., Scott R.A. (2001) Principal Parametric Resorance Zones of Rotating Rigid Shaft Driven Through a Universal Joint, Journal of Sound and Vibration, 244, pp.555-562. https://doi.org/10.1006/jsvi.2000.3503
  13. Mazzei A.J., Scott R.A. (2003) Effects of Internal Viscous Damping on the Stability of a Rotating Shaft Driven Through a Universal Joint, Journal of Sound and Vibration, 265, pp.863-885. https://doi.org/10.1016/S0022-460X(02)01256-7
  14. Mohiuddin M.A., Khulief Y.A. (1994) Modal Characteristics of Rotors using a Conical Shaft Finite Element, Computer Methods in Applied Mechanics and Engineering, 115, pp.125-144. https://doi.org/10.1016/0045-7825(94)90191-0
  15. Nelson, H.D. (1980) A Finite Rotating Shaft Element using Timoshenko Beam Theory, Journal of Mechanical Engineering Design, 102, pp.793-803. https://doi.org/10.1115/1.3254824
  16. Nikravesh P.E. (1998) Computer-Aided Analysis of Mechanical Systems, Prentice-Hall, p.370.
  17. Spring K.W. (1986) Euler Parameters and the use of Quaternion Algebra in the Manipulation of Finite Rotations: A review, Mechanism and Machine Theory, 21, pp.365-373. https://doi.org/10.1016/0094-114X(86)90084-4