Inonotus obliquus 의 균사체 액상배양에서 원형질체 형성과 돌연변이를 통한 단백다당체 고생산성 균주 개발

Strain Improvement through Protoplast Formation and Mutation of Inonotus obliquus Mycelia for Enhanced Production of Innerpolysaccharides (IPS) in Suspended Mycelial Cultures

  • 홍형표 (강원대학교 의생명과학대학 분자생명과학부) ;
  • 정용섭 (전북대학교 식품공학과) ;
  • 전계택 (강원대학교 의생명과학대학 분자생명과학부)
  • Hong, Hyeong-Pyo (College of Biomedical Science, Kangwon National University) ;
  • Jeong, Yong-Seob (Dept. of Food Science and Technology, Chonbuk National University) ;
  • Chun, Gie-Taek (College of Biomedical Science, Kangwon National University)
  • 투고 : 2010.03.02
  • 심사 : 2010.04.24
  • 발행 : 2010.04.28

초록

Inonotus obliquus 균사체의 액상배양을 통해 항당뇨 및 면역증강 효능의 세포벽다당체 (IPS) 생산 공정을 개발하기 위한 첫 시도로서, 고생산성 균주를 개발하는 연구를 수행하였다. Inonotus obliquus는 균사체로 성장할 때 포자를 형성하지 못하므로 단일 세포주를 얻기가 힘든 것으로 관찰되었다. 따라서 Inonotus obliquus 균사체로부터 대량의 원형질체 형성 및 재생에 의한 단일 콜로니 획득 방법을 개발함으로써 생산균주를 신속하게 개량하고자 하였다. 개량된 filtration 방법을 적용해서 원형질체를 회수한 결과, 기존의 trapping 방법에 의해 회수한 수보다 약 5배 증가한 $2.3{\times}10^6$ protoplasts/mL의 원형질체를 회수할 수 있었으며, 원형질체 재생률 또한 $10^{-2}{\sim}10^{-3}$로서 비교적 높게 나타났다. 한편 Inonotus obliquus 균사체의 경우 IPS의 함량이 세포 무게 당 거의 일정한 양을 함유하고 있는 것으로 확인되었으므로, IPS의 생산성을 증가시키기 위해서는 최종 액상 생산배양에서의 균체량 증가가 가장 중요한 것으로 판단되었다. IPS 고생산성의 균주를 개발하기 위해, 이미 선별된 고생산성 균주들의 균사체를 다양한 조건으로 UV 처리한 후, 생존한 원형질체로부터 고생산성의 변이주들을 지속적으로 선별한 결과, 16~18 g DCW/L 범의의 높은 균체 생산성을 보이는 우량균주들을 다수 선별할 수 있었다. 특히 고체 성장배지에서 빠른 성장속도를 보여주는 대부분의 균주들이 최종 액상 생산배양에서도 고생산성 및 고안정성을 보여주는 것으로 나타났다. 이 결과로부터 일련의 균주 개발 공정의 초기 단계에 속하는 고체 성장배양에서 성장속도가 낮은 균주들을 미리 제외시킬 경우, 균주선별의 효율성이 매우 높아짐을 확인할 수 있었다. 최종적으로 97%의 치사율을 보이는 UV 변이처리 조건에서 균사체 생산성이 약 22 g/L에 이르며, 생산 안정성도 높은 우량 균주 (OBLQ756-15-5)를 획득할 수 있었는데, 이 균주를 이용하여 현재 IPS 대량 생산을 위한 pilot-scale 발효조 배양공정을 개발 중이다.

Studies on the production of cell-wall bound innerpolysaccharides (IPS) (soluble ${\beta}$-D-glucan) have been performed by use of suspended myelial cultures of Inonotus obliquus. This product has promising potentials as an effective antidiabetic as well as an immunostimulating agents. As a first step to enhanced production of IPS, Intensive strain improvement programs were carried out by obtaining a large amounts of protoplasts for the isolation of single cell colonies. Rapid and large screening of high-yielding producers was possible because about fivefold higher amount of protoplasts ($2.3{\times}10^6$ protoplasts/mL) could be recovered with relatively high regeneration rates of $10^{-2}{\sim}10^{-3}$ by applying a modified filtration method, as compared to the previously used trapping method. A basic protocol necessary for UV-mutation of the protoplasts was also developed, resulting in several overproducing variants with good fermentation properties. Since the amount of IPS extracted from the mycelial cell walls of I. obliquus turned out to be almost constant per g DCW, increase in cell mass was considered the most important factor for the enhancement in IPS production. Therefore, attempts were made to screen mutant cells showing rapid mycelial growth rate in the final suspended cultures. Notably, the mutant strains showing an active cellgrowth in the preceding solid growth cultures were observed to produce higher amount of IPS in the suspended fermentations as well. A striking mutant, OBLQ756-15-5 strain, obtained from the survivors of a harsh UV-treated condition (97% death rate) was found to stably produce as high cell mass as 22 g DCW/L in the final fermentations. Currently, this strain is being tested for development of a scaled-up fermentation process for mass production of IPS.

키워드

참고문헌

  1. Daba, A. S. and O. U. Ezeronye (2003) Anti-cancer effect of polysaccharides isolated from higher basidiomycetes mushrooms. Afr. J. Biotechnol. 2: 672-678. https://doi.org/10.5897/AJB2003.000-1123
  2. Jong, S. C., J. M. Birmingham, and S. H. Pai (1991) Immunmodulatory substances of fungal origin. J. Immunol. Immunophamacol. 11: 115-122.
  3. Wasser, S. P. (2002) Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl. Microbiol. Biotechnol. 60: 258-274. https://doi.org/10.1007/s00253-002-1076-7
  4. Lee, J. H. (1994) Anti-tumor and immuno-stimulating activity of fungal polysaccharides. J. Microbiol. Biotechnol. 20: 14-21.
  5. Nanba, H. and H. Kuroda (1998) Potentiation of hostmediated antitumor activity by orally administered mushroom (Agaricus bisporus) fruit bodies. Chem. Pharm. Bull. 36: 1437-1444.
  6. Ikekawa, T., M. Nakanishi, N. Uehara, G. Chihara, and F. Fukuoka (1968) Antitumor action of some basidiomycetes, especially Phellinus linteus. Gann. 59: 155-157.
  7. Lee, J. H., S. M. Cho, K. S. Song, S. B. Han, H. M. Kim, N. D. Hong, and I. D. Yoo (1996) Immunostimulating activity and characterization of polysaccharides from mycelium of Phelliuns linteus. J. Microbiol. Biotechnol. 6: 213-218.
  8. Park, Y. D., Y. K. Hong, W. K. Whang, J. D. Huh, and S. Park (1989) Comparisons of protein-bound polysaccharide contents obtained from mycelial cultured broth and fruit body of Coriolus versicolor. Kor. J. Mycol. 17: 223-228.
  9. Kim, M. A., Y. S. Jeong, G. T. Chun, and Y. S. Cha (2009) Antihyperlipidemic and glycemic control effects of mycelia of Inonotus obliquus including proteinbound polysaccharides extract in C57BL/6J mice. Kor. J. Food Nutr. 38: 667-673. https://doi.org/10.3746/jkfn.2009.38.6.667
  10. Kim, Y. O., H. W. Park, J. H. Kim, J. Y. Lee, S. H. Moon, and C. S. Shin (2006) Anti-cancer effect and structural characterization of endo-polysaccharide from cultivated mycelia of Inonotus obliquus. Life Sci. 79: 72-80. https://doi.org/10.1016/j.lfs.2005.12.047
  11. Park, Y. K., H. B. Lee, E. J. Jeon, H. S. Jung, and M. H. Kang (2004) Chaga mushroom extract inhibits oxidative DNA damage in human lymphocytes as assessed by comet assay. Biofactors 21: 109-112. https://doi.org/10.1002/biof.552210120
  12. Mizuno, T., C. Zhuang, K. Abe, H. Okamoto, T. Kiho, S. Ukai, S. Leclerc, and L. Meijer (1999) Antitumor and hypoglycemic activities of polysaccharides from the sclerotia and mycelia of Inonotus obliquus. Int. J. Med. Mushrooms 1: 301-316. https://doi.org/10.1615/IntJMedMushr.v1.i4.20
  13. Kahlos, K., L. Kangas, and R. Hitunen (1987) Antitumor activity of some compounds and fractions from an n-hexane extract of Inonotus obliquus. Acta. Pharm. Fenn. 96: 33-40.
  14. Park, Y. M., J. H. Won, Y. H. Kim, J. W. Choi, H. J. Park, and K. T. Lee (2005) In vivo and in vitro anti inflammatory and anti-nociceptive effects of the methanol extract of Inonotus obliquus. J. Ethnopharmacol. 101: 120-128. https://doi.org/10.1016/j.jep.2005.04.003
  15. Chung, K. H., J. J. Han, C. W. Lee, J. D. Park, and E. C. Ko (2003) Composition containing Chaga mushroom extract as an active ingredient. Korean Patent Unexamined 10-2003-0065964.
  16. Park, H. J., Y. J. Kim, and D. S. Lee (2003) Manufacture method of a functional tea and food, using extract of mushroom mycelium by new extraction technique. Korean Patent Unexamined 10-2003-0072417.
  17. Shin, W. S., Y. J. Kwon, Y. S. Jeong, and G. T. Chun (2009) Importance of strain improvement and control of fungal cells morphology for enhanced production of protein-bound polysaccharides ($\beta$-D-glucan) in suspended cultures of Phellinus linteus mycelia. Kor. Chem. Eng. Res. 47: 220-229.
  18. Kim, H. H., J. J. Na, Y. K. Chang, G. T. Chun, Y. H. Jeong, and S. J. Lee (2004) Optimization of submerged culture conditions for mycelial growth and exopolysaccharides production by Agaricus blazei. J. Microbiol. Biotechnol. 14: 944-951.
  19. Na, J. J., H. H. Kim, Y. K. Chang, G. T. Chun, Y. H. Jeong, and S. J. Lee (2005) Enhancement of $\beta$-Dglucans production by Agaricus blazei Murill by nitrogen source supplementation. J. Microbiol. Biotechnol. 15: 1388-1391.
  20. Zhu, Z. P. and H. L. Ma (2007) Separation and regeneration of protoplast from Phellinus igniarius. Zhongguo Zhongyao Zazhi 32: 2232-2235.
  21. Farin, J. I., O. E. Molina, and L. I. C. Figueroa (2004) Formation and regeneration of protoplasts in Sclerotium rolfsii ATCC 201126. J. Appl. Microbiol. 96: 254-262. https://doi.org/10.1046/j.1365-2672.2003.02145.x
  22. Kelkar, H. S., V. Shankar, and M. V. Deshpande (1990) Rapid isolation and regeneration of Sclerotium rolfsii protoplasts and their potential application for starch hydrolysis. Enzyme Microb. Technol. 12: 510-514. https://doi.org/10.1016/0141-0229(90)90067-Z