DOI QR코드

DOI QR Code

향상된 자유후류 기법을 이용한 비정상 로터-동체 상호작용 시뮬레이션

Simulation of Unsteady Rotor-Fuselage Interaction Using an Improved Free-Wake Method

  • 이준배 (부산대학교 항공우주공학과 대학원) ;
  • 서진우 (부산대학교 항공우주공학과 대학원) ;
  • 이재원 (부산대학교 항공우주공학과 대학원) ;
  • 이관중 (부산대학교 항공우주공학과) ;
  • 오세종 (부산대학교 항공우주공학과)
  • 투고 : 2010.04.07
  • 심사 : 2010.06.17
  • 발행 : 2010.07.01

초록

본 논문에서는 시간전진 자유후류 모델이 고려된 비정상 패널 코드를 이용하여 비정상 로터-동체 상호작용에 대한 수치적 해석기법에 대한 연구를 수행하였다. 이전 개발된 시간전진 자유후류 모델이 고려된 비정상 패널 코드는 후류와 깃(Blade)이 아주 근접한 경우에 불안정성이 발생하였다. 이를 제거하기 위해 장속도 기법을 적용하여 코드를 개선하였다. 개선된 코드를 이용하여 NASA에서 실험된 ROBIN(ROtor Body Interaction) 형상에 대한 해석을 수행하였다. 로터가 있을 때와 없을 때의 동체 표면 압력과 유도 유입류의 비를 실험결과 및 기존 수치해석 결과들과 비교하였다. 개발된 코드는 로터-동체 상호 작용으로 인해 발생하는 유동 특성과 생성되는 복잡한 후류의 형상을 잘 예측하였다.

This study is to investigate the aerodynamic effects of the Rotor-Fuselage Interactions in forward flight, and is conducted by using an improved time-marching free-wake panel method. To resolve the instability caused by the close proximity of the wake to the blade surface, the field velocity approach is added to the prior unsteady panel code. This modified method is applied to the ROBIN(ROtor Body Interaction) problem, which had been conducted experimentally in NASA. The calculated results, pressure distribution on fuselage surface and induced inflow ratio without and with the rotor, are compared with the experimental results. The developed code shows not only very accurate prediction of the aerodynamic characteristics for the rotor-fuselage interaction problem but also the rotor wake development.

키워드

참고문헌

  1. Sheridan P. F., "Interactional Aerodynamics of the Single-Rotor Helicopter Configuration", U.S. Army Research and Technology Laboratories, TR-78-23, Sept. 1978.
  2. Brand A. G., Komerath N. M. and McMahon H. M., "Surface Pressure Measurement on a Body Subject to Vortex Wake Interaction", AIAA Journal, Vol. 27, No. 5, May, 1989, pp. 569-574. https://doi.org/10.2514/3.10147
  3. Smith C. A. and Betzina M. D.,"Aerodynamic Loads Induced by a Rotor on a Body of Revolution", Journal of the American Helicopter Society, Vol. 31, No. 1, 1986, pp. 4-15. https://doi.org/10.4050/JAHS.31.4
  4. Freeman C. E., "Development and Validation of a Combined Rotor-Fuselage Induced Flow-Field Computational Method", NASA TP 1656, 1980.
  5. Trept T., "A 0.15-Scale Study of Configuration Effects on the Aerodynamic Interaction between Main Rotor and Fuselage", NASA CR-166577, 1984.
  6. Wilby P. G., Young C. and Grant J., "An Investigation of the Influence of Fuselage Flow Field on Rotor Loads and the Effects of Vehicle Configuration", Vertica, Vol. 3, 1979, pp. 79-94.
  7. Egolf T. A. and Lorber P. F., "An Unsteady Rotor/Fuselage Interactional Method", Proceedings of the Specialist's Meeting on Aerodynamics and Aeroacoustics, Arlington, TX, Feb. 25-27, 1987.
  8. Mavris D. N., Liou S. G., Komerath N. M. and McMahon H. M., "Measurement and Computation of the Velocity Field of a Cylinder in the Wake of a Rotor in Forward Flight”, Paper AIAA-89-1844, Proc. of The 20th AIAA Fluid Dynamics, Plasma Dynamics, and Lasers Conference, Buffalo, NY, 1989.
  9. Berry J. D., "A Method of Computing the Aerodynamic Interactions of a Rotor-Fuselage Configuration in Forward Flight", Ph.D. Thesis, Georgia Institute of Technology, School of A.E., June, 1990.
  10. Quackenbush T. R., Lam C. G. and Bliss D. B., "Vortex Methods for the Computational Analysis of Rotor/Body Interaction", Journal of the American Helicopter Society, Vol. 39, 1994, pp. 14-24. https://doi.org/10.4050/JAHS.39.14
  11. Nam H. J., Park Y. M. and Kwon O. J., "Simulation of Unsteady Rotor-Fuselage Aerodynamic Interaction Using Unstructured Adaptive Meshes", Journal of the American Helicopter Society, Vol. 51, No. 2, 2006, pp. 141-149. https://doi.org/10.4050/JAHS.51.141
  12. Lee J. W., Oh S. J. and Yee K. J., "Aerodynamic Characteristic Analysis of Multi-Rotors Using a Modified Free-Wake Method", Transactions of the Japan Society for Aeronautical and Space Sciences, Vol. 52, No. 177, 2009, pp. 168-179. https://doi.org/10.2322/tjsass.52.168
  13. Vatistas G. H., Kozel V. and Mih W., "A Simpler Model for Concentrated Vortices", Experiments in Fluids, Vol. 11, 1991, pp. 73-76. https://doi.org/10.1007/BF00198434
  14. Squire H. B., "The Growth of a Vortex in Turbulent Flow", Aeronautical Quarterly, Vol. 16, 1965, pp. 302-306. https://doi.org/10.1017/S0001925900003516
  15. Leishman J. G., Principles of Helicopter Aerodynamics, 2nd Edition, Cambridge University Press, 2006.
  16. Bagai A. and Leishman J. G., "Rotor Free-wake Modeling Using a Relaxation Technique - Including Comparisons with Experimental Data," Proc. of The 50th Annual Forum of the American Helicopter Society, Washington, D.C., USA, 1994.
  17. Stepniewski W. Z. and Keys C. N., Rotary-Wing Aerodynamics, Dover, 1984, pp. 188-190.
  18. Crouse G. L. Jr., "An Analytical Study of Unsteady Rotor/Fuselage Interaction in Hover and Forward Flight", Ph.D. Thesis, University of Maryland, USA, 1992.
  19. Lighthill M. J., Laminar Boundary Layers, Dover Publications, Inc., 1963.
  20. Lee J. W., Oh S. J., Yee K. J. and Kim D. K., "Numerical Investigation on Overlap Effects of Tandem Rotors in Forward Flight", International Journal of Aeronautics & Space Sciences, Vol. 10, No. 2, November, 2009, pp. 63-76. https://doi.org/10.5139/IJASS.2009.10.2.063
  21. Datta A., Sitaraman J., Baeder J. D. and Chopra I., "Analysis Refinements for Prediction of Rotor Vibratory Loads in High-Speed Forward Flight", Proc. of American Helicopter Society 60th Annual Forum, Baltimore, USA, 2004.
  22. Gennaretti M. and Bernardini G., "Novel Boundary Integral Formulation for Blade-Vortex Interaction Aerodynamics of Helicopter Rotors", AIAA Journal, Vol. 45, No. 6, 2007, pp. 1169-1176. https://doi.org/10.2514/1.18383
  23. Maskew B., "Program VSAERO Theory Document", NASA CR 4023, 1987.
  24. 남화진, 박영민, 권오준, “전진 비행시 헬리콥터 로터-동체 간섭현상 해석”, 항공우주학회 추계학술발표회, 2003. 11, pp. 558-562.
  25. Elliott J. W., Althoff S. L. and Sailey R. H., "Inflow Measurement Made with a Laser Velocimeter on a Helicopter Model in Forward Flight, Volume I, Rectangular Planform Blades at an Advance Ratio of 0.15", NASA TM 100541, 1988.
  26. Kenyon A. R. and Brown R. E., "Wake Dynamics and Rotor-Fuselage Aerodynamic Interactions", Journal of the American Helicopter Society, Vol. 54, No. 1, 2009, pp. 012003-1-012003-18. https://doi.org/10.4050/JAHS.54.012003

피인용 문헌

  1. Wake Structure of Tip Vortex Generated by a Model Rotor Blade of NACA0015 Airfoil Section vol.39, pp.3, 2011, https://doi.org/10.5139/JKSAS.2010.39.3.210
  2. Verification of the Open Source Code, OpenFOAM to the External Flows vol.39, pp.8, 2011, https://doi.org/10.5139/JKSAS.2011.39.8.702