• Title/Summary/Keyword: 로터-동체 상호작용

Search Result 3, Processing Time 0.015 seconds

Simulation of Unsteady Rotor-Fuselage Interaction Using an Improved Free-Wake Method (향상된 자유후류 기법을 이용한 비정상 로터-동체 상호작용 시뮬레이션)

  • Lee, Joon-Bae;Seo, Jin-Woo;Lee, Jae-Won;Yee, Kwan-Jung;Oh, Se-Jong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.7
    • /
    • pp.629-636
    • /
    • 2010
  • This study is to investigate the aerodynamic effects of the Rotor-Fuselage Interactions in forward flight, and is conducted by using an improved time-marching free-wake panel method. To resolve the instability caused by the close proximity of the wake to the blade surface, the field velocity approach is added to the prior unsteady panel code. This modified method is applied to the ROBIN(ROtor Body Interaction) problem, which had been conducted experimentally in NASA. The calculated results, pressure distribution on fuselage surface and induced inflow ratio without and with the rotor, are compared with the experimental results. The developed code shows not only very accurate prediction of the aerodynamic characteristics for the rotor-fuselage interaction problem but also the rotor wake development.

Simulation of Unsteady Rotor-Fuselage Aerodynamic Interaction Using Unstructured Adaptive Meshes (비정렬 적응 격자계를 이용한 비정상 로터-동체 공력 상호작용 모사)

  • Nam, H.-J.;Park, Y.-M.;Kwon, O.-J.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.11-21
    • /
    • 2005
  • A three-dimensional parallel Euler flow solver has been developed for the simulation of unsteady rotor-fuselage interaction aerodynamics on unstructured meshes. In order to handle the relative motion between the rotor and the fuselage, the flow field was divided into two zones, a moving zone rotating with the blades and a stationary zone containing the fuselage. A sliding mesh algorithm was developed for the convection of the flow variables across the cutting boundary between the two zones. A quasi-unsteady mesh adaptation technique was adopted to enhance the spatial accuracy of the solution and to better resolve the wake. A low Mach number pre-conditioning method was implemented to relieve the numerical difficulty associated with the low-speed forward flight. Validations were made by simulating the flows around the Georgia Tech configuration and the ROBIN fuselage. It was shown that the present method is efficient and robust for the prediction of complicated unsteady rotor-fuselage aerodynamic interaction phenomena.

The Extension and Validation of OpenFOAM Algorithm for Rotor Inflow Analysis using Actuator Disk Model (Actuator Disk 모델 기반의 로터 유입류 해석을 위한 OpenFOAM 알고리즘 확장)

  • Kim, Tae-Woo;Oh, Se-Jong;Yee, Kwan-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.12
    • /
    • pp.1087-1096
    • /
    • 2011
  • The purpose of current study is to develop and verify the newly developed solver for analyzing rotor flow using the open-source code. The algorithm of standard solver, OpenFOAM, is improved to analyze the rotor inflow with and without fuselage. For the calculation of the rotor thrust, the virtual blade method based on the blade element method is employed. The inflow velocities on the rotor disk used to specify the effective angle of attack, have been included in the solver. The results of the current rotor inflow analysis are verified by comparing with other experimental and numerical results. It was confirmed that the modified solver provides satisfactory results for rotor-fuselage interaction problem.