Thermotropic Liquid Crystalline Behavior of Tri-O-[4-{4'-(cyanophenylazo)phenoxy}]alkyl Celluloses

트리-O-[4-{4'-(시아노페닐아조)페녹시}]알킬 셀룰로오스들의 열방성 액정 거동

  • Jeong, Seung-Yong (Department of Polymer Science and Engineering, Dankook University) ;
  • Son, Ho-Min (Department of Polymer Science and Engineering, Dankook University) ;
  • Ma, Yung-Dae (Department of Polymer Science and Engineering, Dankook University)
  • 정승용 (단국대학교 고분자공학과) ;
  • 손호민 (단국대학교 고분자공학과) ;
  • 마영대 (단국대학교 고분자공학과)
  • Received : 2009.10.23
  • Accepted : 2009.11.30
  • Published : 2010.03.25

Abstract

The thermotropic liquid crystalline behavior of the homologous series of combined-type liquid crystalline polymers, tri-O-{4-(4'-cyanophenylazo)phenoxy}alkyl celluloses (CACETn, where n, the number of methylene units in the spacer, is 2~10) have been investigated. The CACETn with n of 5 and 7 exhibited enantiotropic nematic phases, while other polymers showed monotropic nematic phases. The isotropic-nematic transition temperature($T_{iN}$) increased when n is increased up to 4, but it decreased with increasing n more than 5. The entropy change at $T_{iN}$ also reaches a minimum at n=5, before it increases again for n=6. The sharp change at n=5 may be attributed to the difference in arrangement in the side groups. The nematic-crystalline transition temperatures, in contrast with $T_{iNS}$, exhibited a distinct odd-even effect, suggesting that the average shape of the side chains in the crystalline phase is different from that in the nematic phase. The mesophase properties of CACETn were significantly different from those reported for tri-O-alkyl celluloses and poly[1-{4-(4'-cyanophenylazo)phenoxyalkyloxy}ethylene]s. The results were discussed in terms of the difference in the chemical structures of the main and side chains and the number of the mesogenic units per repeating unit.

복합형 액정 고분자 동족체들인 트리-O-[4-{4'-(시아노페닐아조)페녹시}]알킬셀룰로오스들 (CACETn, n=2-10, 유연격자중의 메틸렌 단위들의 수)의 열방성 액정 거동을 검토하였다. n=5,7인 CACETn은 쌍방성 네마틱 상들을 형성하는 반면 다른 고분자들은 단방성 네마틱 상들을 형성하였다. 액체 상에서 네마틱 상으로의 전이온도($T_{iN}$)는 n이 4까지는 높아지나 n이 5이상에서는 n이 증가함에 따라 낮아졌다. $T_{iN}$에서의 엔트로피 변화도 n=6에서 재차 증가하기 전에 n=5에서 최소치를 나타냈다. n=5에서의 급격한 변화는 곁사슬 그룹들의 배열의 차이에 의해 초래되는 것으로 생각된다. $T_{iN}$들과 달리 네마틱 상에서 결정 상으로의 전이온도들은 현저한 홀수-짝수 효과를 나타냈다. 이러한 사실은 네마틱 상과 결정 상에서의 곁사슬 그룹들의 평균적인 형태가 판이함을 시사한다. CACETn의 액정 특성은 트리-O-알킬 셀룰로오스들 그리고 폴리[1-{4-(4'-시아노페닐아조)페녹시알킬옥시}에틸렌]들에 대해 보고된 결과와 현저히 달랐다. 이러한 결과들을 주사슬과 곁사슬의 화학구조 그리고 반복단위당의 mesogenic 단위들의 차이들의 견지에서 검토하였다.

Keywords

References

  1. K. Shimamura, J. L. White, and J. F. Fellors, J. Appl. Polym. Sci., 26, 2615 (1981).
  2. T. Fukuda, Y. Tsujii, and T. Miamoto, Macromol Symp., 99, 257 (1995).
  3. P. Zugenmair, Handbook of Liquid Crystals, D. Demus, J. Goodby, G. W. Gray, H. W. Spiess, and V. Vill, Editors, Wiley-VCH, Weinheim New York, Vol 3, Chap. IX, p 453 (1998).
  4. S.-Y. Jeong, J.-H. Jeong, Y.-D. Ma, and Y. Tsujii, Polymer(Korea). 25, 279 (2001).
  5. H. Hou, A. Reuning, J. H. Wendroff, and A. Greiner, Macromol. Chem. Phys., 201, 2050 (2000). https://doi.org/10.1002/1521-3935(20001001)201:15<2050::AID-MACP2050>3.0.CO;2-I
  6. B. Huang, J. J. Ge, Y. Li, and H. Hou, Polymer, 48, 264 (2007). https://doi.org/10.1016/j.polymer.2006.11.033
  7. Q. Zhou, L. Zhang, H. Okamura, M. Minoda, and T. Miyamoto, J. Polym. Sci. Part A: Polym. Chem., 39, 376 (2001). https://doi.org/10.1002/1099-0518(20010201)39:3<376::AID-POLA1004>3.0.CO;2-Z
  8. J.-H. Kim, S.-Y. Jeong, and Y.-D. Ma, Industrial Technology Research Paper(Dankook University), 7, 75 (2006).
  9. S.-Y. Jeong and Y.-D. Ma, Polymer(Korea), 32, 169 (2008).
  10. S.-Y. Jeong and Y.-D. Ma, Polymer(Korea), 32, 446 (2008).
  11. S.-Y. Jeong and Y.-D. Ma, Polymer(Korea), 33, 58 (2009).
  12. V. Shibaev, A. Bobrovsky, and N. Boiko, Prog. Polym. Sci., 28, 729 (2003). https://doi.org/10.1016/S0079-6700(02)00086-2
  13. L. Brehmer, Polymer Sensors and Actuators, Y. Osada and D. De Rossi, Editors. Springer-Verlag, Berlin, Chap 2, p 15 (2002).
  14. S. Kurihara, K. Iwamoto, and T. Nonaka, J. Chem. Soc., Chem. Commun., 2195 (1995).
  15. S. Kurihara, K. Iwamoto, and T. Nonaka, Polymer, 39, 3565 (1998). https://doi.org/10.1016/S0032-3861(97)10268-3
  16. S.-Y. Jeong and Y.-D. Ma, Polymer(Korea), 33, 297 (2009).
  17. T. Yamagishi, Ph. D. dissertation, Kyoto University, 1989.
  18. T. Itoh, H. Suzuki, and T. Miyamoto, Bull. Inst. Chem. Res. (Kyoto Univ.), 70, 132 (1992).
  19. L. Andruzzi, A. Altomare, F. Ciardelli, R. Solaro, S. Hvilsted, and P. S. Ramanujam, Macromolecules, 32, 448 (1999). https://doi.org/10.1021/ma980160j
  20. S.- Y. Jeong and Y.- D. Ma, Polymer(Korea), 32, 489 (2008).
  21. C. Noel. Handbook of Liquid Crystals, D. Demus, J. Goodby, G. W. Gray, H.-W. Spiess, and V. Vill, Editors, Wiley-VCH, Weinheim-New York, Vol 3, Chap. II, p 93 (1998).
  22. J. W. Y. Lam and B. Z. Tang, J. Polym. Sci. Part A: Polym. Chem., 41, 2607 (2003). https://doi.org/10.1002/pola.10802
  23. P. Maganini, Thermotropic Liquid Crystal Polymer Blends, F. P. La Mania, Editor, Technonic Publishing Company, Inc., Western Hemisphere, Chap. 1, p 7 (1993).
  24. M. Yalpani, Polysaccharides, Elsevier, New York, Chap. 4, p 83 (1998).
  25. A. Iogai, A. Ishizu, and J. Nakano, J. Appl. Polym. Sci., 31, 341 (1986). https://doi.org/10.1002/app.1986.070310205
  26. C. Jianan, H. Yifang, Y. Jinyue, Y. Shaoqiong, and Y. Hua, J. Appl. Polym. Sci., 45, 2153 (1992). https://doi.org/10.1002/app.1992.070451211
  27. C. Wu, Q. Gu, Y. Huang, and S. Chen, Liq. Cryst., 30, 733 (2003). https://doi.org/10.1080/0267829031000115005
  28. V. Percec and C. Pugh, Side Chain Liquid Crystal Polymers, C. B. McAdle, Editor, Chapman and Hall, New York, Chap. 3, p 30 (1989).
  29. R. Zental, Handbook of Liquid Crystals. D. Demus, J. Goodby, G. W. Gray, H.-W. Spiess, and V. ViII, Editors, Wiley-VCH, Weinheim-New York, Vol 3, Chap. 3, p 52 (1998).
  30. S. Kumaresan and P. Kannan, J. Polym. Sci. Part A: Polym. Chem., 41, 3188 (2003). https://doi.org/10.1002/pola.10910
  31. K. Rameshbabu and P. Kannan, J. Appl. Polym. Sci., 104, 2760 (2007). https://doi.org/10.1002/app.25926
  32. M. Sato and M. Mizoi, Polym. J., 36, 607 (2004). https://doi.org/10.1295/polymj.36.607
  33. M. Sato, K. Nakagawa, M. Hayakawa, K.-I. Mukaida, H. Fujiwara, and Y. Tada, Macromol. Chem. Phys., 196, 2955 (1995). https://doi.org/10.1002/macp.1995.021960919
  34. J.-W. Lee, J.-I. Jin, B.-W. Jo, J.-S. Kim, W.-C. Zin, and Y.-S. Kang, Acta Polym., 50, 399 (1999). https://doi.org/10.1002/(SICI)1521-4044(19991201)50:11/12<399::AID-APOL399>3.0.CO;2-7
  35. X. L. Piao, J.-S. Kim, Y.-K. Yun, J.-I. Jin, and S.-K. Hong, Macromolecules, 30, 2294 (1997). https://doi.org/10.1021/ma961649k
  36. J.-W. Lee and J.-I. Jin, Bull. Korean Chem. Soc., 21, 957 (2000).
  37. M. Warner, Side Chain Liquid Crystal Polymers, C. B. McArdle. Editor, Chapman and Hall, New York, Chap 3, p 7 (1989).
  38. V. Percec, A. D. Asandai, D. H. Hill, and D. Crawford, Macromolecules, 32, 2597 (1999). https://doi.org/10.1021/ma9900129
  39. S.-Y. Jeong and Y.-D. Ma, Polymer(Korea), 30, 35 (2006).
  40. M. Ratloh, J. Stumpe, L. Stachanov, S. Kostromin, and V. Shibaev, Mol. Cryst. Liq. Cryst., 352, 149 (2000). https://doi.org/10.1080/10587250008023172
  41. A. A. Craig, I. Winchester, P. C. Madden, P. Larcev, I. W. Hamley, and C. T. Imrie, Polymer, 39, 1197 (1998). https://doi.org/10.1016/S0032-3861(97)00394-7
  42. C. Pugh and A. L. Kiste Handbook of Liquid Crystals, D. Demus, J. Goodby, G. W. Gray, H.-W. Spiess, and V. Vill, Editors, Wiley-VCH, Weinheim-New York, Vol 3, Chap. III, p 123 (1998).
  43. A. A. Craig and C. T. Imrie, Macromolecules, 28. 3617 (1995). https://doi.org/10.1021/ma00114a015
  44. C. T. Imrie, F. E. Karasz, and G. S. Attard, Macromolecules, 26, 3803 (1993). https://doi.org/10.1021/ma00067a013
  45. S.-Y. Jeong, I.-S. Kim, and Y.-D. Ma, J. Korean Ind. Eng. Chem., 20, 603 (2009).
  46. Z. Komiya and R. R. Schrock, Macromolecules, 26, 1393 (1993). https://doi.org/10.1021/ma00058a031
  47. G. W. Gray and J. W. G. Goodby, Smectic Liquid Crystals, Leonard Hill, Glasgow and Lodon, p 1 (1984).
  48. J. W. Goodby, Handbook of Liquid Crystals, D. Demus, J. Goodby, G. W. Gray, H.-W. Spiess, and V. Vill, Editors, Wiley-VCH, Weinhein-New York, Vol 2A, Chap. V, p 411 (1998).
  49. S.-Y. Jeong and Y.-D. Ma, Polymer(Korea), 33, 144 (2009).
  50. G. W. Gray, The Molecular Physics of Liquid Crystals, G. R. Luckhurst and G. W. Gray, Editors, Academic Press, New York, Chap. 1, p 1 (1979).
  51. P. J. Collings and M. Hird, Introduction to Liquid Crystals, G. W. Gray, J. W. Goodby, and A. Fukuda, Editors, Taylor and Francis Ltd., London, Chap. 3, p 43 (1997).
  52. D. Demus, Handbook of Liquid Crystals, D. Demus, J. Goodby, G. W. Gray, H.-W. Spiess, and V. Vill, Editors, Wiley-VCH, Weinhein-New York, Vol 1, Chap. VI, p 133 (1998).
  53. J.-I. Jin, Mol. Cryst. Liq. Cryst., 267, 249 (1995). https://doi.org/10.1080/10587259508034002
  54. C. T. Imrie, T. Schleeh, F. E. Karasz, and G. S. Attard, Macromolecules, 26, 539 (1993). https://doi.org/10.1021/ma00055a020
  55. J. W. Y. Lam, X. Kong, Y. Dong, K. K. L. Cheuk, K. Xu, and B. Z. Tang, Macromolecules, 33, 5027 (2000). https://doi.org/10.1021/ma992097j
  56. A. A. Craig and C. T. Imrie, Macromolecules, 32, 6215 (1999). https://doi.org/10.1021/ma990525f
  57. C. T. Imrie, F. E. Karasz, and G. S. Attard, Macromolecules, 26, 545 (1993). https://doi.org/10.1021/ma00055a021
  58. S.-Y. Jeong and Y.-D. Ma, Polymer(Korea), 32, 230 (2008).
  59. T. Yamaguchi, T. Asada, H. Hayashi, and N. Nakamura, Macromolecules, 22, 1141 (1989). https://doi.org/10.1021/ma00193a024
  60. T. Yamaguchi and T. Asada, Liq. Cryst., 10, 215 (1991). https://doi.org/10.1080/02678299108036427
  61. S.-Y. Jeong and Y.-D. Ma, Polymer(Korea), 31, 58 (2007).
  62. E. Chiellini and M. Laus, Handbook of Liquid Crystals, D. Demus, J. Goodby, G. W. Gray, H.-W. Spiess, and V. Vill, Editors, Wiley-VCH, Weinheim-New York, Vol 3, Chap. 2, p 26 (1998).
  63. M. Tokita and J. Watanabe, Polym. J., 38, 611 (2006). https://doi.org/10.1295/polymj.PJ2006008
  64. B. Q. Chen, A. Kaneyama, and T. Nishikubo, Macromolecules, 32, 6485 (1999). https://doi.org/10.1021/ma990348i