A Study of Efficient Pattern Classification on Texture Feature Representation Coordinate System

텍스처 특징 표현 좌표체계에서의 효율적인 패턴 분류 방법에 대한 연구

  • 우경덕 (세종대학교 대학원 디지털콘텐츠학과) ;
  • 김성국 (세종대학교 대학원 디지털콘텐츠학과) ;
  • 백성욱 (세종대학교 컴퓨터 공학부 디지털콘텐츠학과)
  • Received : 2009.09.14
  • Accepted : 2010.02.01
  • Published : 2010.02.28

Abstract

When scenes in the real world are perceived for the purpose of computer/robot vision fields, there are great deals of texture based patterns in them. This paper introduces a texture feature representation on a coordinate system in which many different patterns can be represented with a mathematical model (Gabor function). The representation of texture features of each pattern on the coordinate system results in the high performance/competence of texture pattern classification. A decision tree algorithm is used to classify pattern data represented on the proposed coordinate system. The experimental results for the texture pattern classification show that the proposed method is better than previous researches.

컴퓨터/로봇 비전 분야에서 실세계 장면들을 촬영할 때, 상당 부분의 텍스처 기반 패턴들이 발견되는데, 본 논문에서는 그런 다양한 패턴들을 적절하게 표현할 수 있는 수학적 모델(Gabor 함수)을 기반으로 한 특징 측정 좌표 체계를 소개한다. 그 체계를 통한 텍스처 패턴의 여러 특징들에 대한 측정값의 표현은 텍스처 패턴분류 작업을 수행하는데 보다 효율적인 성능을 가능케 한다. 또한 실험에 사용된 텍스처 이미지 데이터의 좌표 체계에서의 표현 정보가 추후 유사 연구들에 의해 활용될 수 있으며, 제안된 좌표 체계에서 표현된 패턴 데이터를 분류하는데 가장 적합한 의사결정나무 알고리듬을 사용한다. 최종적으로, 다양한 텍스처 패턴분류 실험을 통해 기존 연구 방법들에 비해 연구 결과의 개선이 있음을 보여준다.

Keywords

References

  1. B.S. Manjunath and W.Y. Ma, "Browsing large satellite and aerial photographs," International Conference on Image Processing, Vol.2, pp. 765-768, 1996.
  2. G. Rabatel, C. Delenne and M. Deshayes, "A non-supervised approach using Gabor filters," Computers and Electronics in Agriculture, Vol.62, No.2, pp. 159-168, 2008. https://doi.org/10.1016/j.compag.2007.12.010
  3. J.V. Soares, C.D. Renno, and A.R. Formaggio, "An Investigation of the Selection of Texture Features for Crop Discrimination Using SAR Imagey," Remote sensing of environment, Vol.59, No.2 pp. 234-247, 1997. https://doi.org/10.1016/S0034-4257(96)00156-3
  4. O.C.R. Filho, P.M. Treitz, E.D. Soulis, P.J. Howarth, and N. Kouwne, "Texture Processing of Synthetic Aperture Radar Data Using Second-Order Spatial Statics," Computer & Geosciences, Vol.22, No.1, pp. 27-34, 1996. https://doi.org/10.1016/0098-3004(95)00054-2
  5. F.S. Cohen, Z. Fan and S. Attali, "Automated Inspection of Textile Fabrics Using Textural Models," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.13, No.8, pp. 803-808, 1991. https://doi.org/10.1109/34.85670
  6. Z. He, X. You, and Y. Yuan, "Texture image retrieval based on non-tensor product wavelet filter banks," Signal Processing, Vol.89, No.8, pp. 1501-1510, 2009. https://doi.org/10.1016/j.sigpro.2009.01.021
  7. K. Shiranita, T. Miyajima and R. Takiyama, "Determination of meat quality by texture analysis," Pattern Recognition Letters, Vol. 19, No.4, pp. 1319-1324, 1998. https://doi.org/10.1016/S0167-8655(98)00113-5
  8. O. Makeyev, E. Sazonov, T. Baidyk, and A. Martm, "Limited receptive area neural classifier for texture recognition of mechanically treated metal surfaces," Neurocomputing, Vol.71, pp. 1413-1421, 2008. https://doi.org/10.1016/j.neucom.2007.05.004
  9. S.J. Hickinbotham, E.R. Hancock and J. Austin, "Segmenting modulated line textures with S-Gabor filters," International Conference on Image Processing, Vol.3, pp. 149-152, 1996.
  10. S.J. Hickinbotham, E.R. Hancock, and J. Austin, "S-Gabor channel design for segmentation of modulated textures," Sixth International Conference on Image Processing and Its Applications, Vol.2, pp. 591-595, 1997.
  11. C.M. Senet, J. Seemann, and F. Ziemer, "Dispersive surface classification: local analysis of optical image sequences of the water surface to determine hydrographic parameter maps," OCEANS 2000 MTS/IEEE Conference and Exhibition, Vol.3, pp. 1769-1774, 2000.
  12. G. Palubinskas, "Adaptive filtering in magnetic resonance images," Proceedings of the 13th International Conference on Pattern Recognition, Vol.3, pp. 523-257, 1996.
  13. M. Macenko, M. Celenk and M. Limin, "Lesion Detection Using Morphological Watershed Segmentation and Modelbased Inverse Filtering," International Conference on Pattern Recognition, Vol.4, pp. 679-682, 2006.
  14. F. Bianconi and A. Fernandez, "Evaluation of the effects of Gabor filter parameters on texture classification," Pattern Recognition, Vol.40 No.12, pp. 3325-3335, 2007. https://doi.org/10.1016/j.patcog.2007.04.023
  15. S.C. Kim and T.J. Kang, "Texture classification and segmentation using wavelet packet frame and Gaussian mixture model," Pattern Recognition, Vol.40, No.4, pp. 1207-1221, 2007. https://doi.org/10.1016/j.patcog.2006.09.012
  16. D. Puig and M.A. Garcia, "Automatic texture feature selection for image pixel classification," Pattern Recognition, Vol.39, No.11, pp. 1996-2009, 2006 https://doi.org/10.1016/j.patcog.2006.05.016
  17. B.S. Manjunatha and W.Y. Ma, "Texture features for browsing and retrieval of image data," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.18, No.8, pp. 837-841, 1996. https://doi.org/10.1109/34.531803
  18. S.E. Grigorescu, N. Petkov and P. Kruizinga, "Comparison of texture features based on Gabor filters," IEEE Transaction on Image Processing, Vol.11, No.10, pp. 1160-1167, 2002. https://doi.org/10.1109/TIP.2002.804262
  19. D.A. Clausi and H. Deng, "Design-based texture feature fusion using Gabor filters and co-occurrence probabilities," IEEE transactions on image processing, Vol.14, No.7, pp. 925-936, 2005. https://doi.org/10.1109/TIP.2005.849319
  20. T. Andrysiak and M. Choras, "Image retrieval based on hierarchical Gabor filters," International Journal Applied Computer Science, Vol.15, No.4, pp. 471-480, 2005.
  21. M.R. Turner, "Texture discrimination by Gabor functions," Biological Cybernetics archive. Vol.55, pp. 71-82, 1986.
  22. J. Cook, V. Chandran, S. Sridharan and C. Fookes, "Gabor Filter Bank Representation for 3D Face Recognition," Digital Image Computing: Techniques and Applications, pp. 4, 2005.
  23. M. Foracchia, E. Grisan and A. Ruggeri, "Luminosity and contrast normalization in retinal images," Medical Image Analysis, Vol.9, No.3, pp. 179-190, 2005. https://doi.org/10.1016/j.media.2004.07.001
  24. S. Tan, J.L. Dale and A. Johnston, "Performance of three recursive algorithms for fast space-variant Gaussian filtering," Real-Time lmaging, Vol.9, No.3, pp. 215-228, 2003. https://doi.org/10.1016/S1077-2014(03)00040-8
  25. C.Y. Wee, R. Paramesran and R. Mukundan, "Quality Assessment of Gaussian Blurred Images Using Symmetric Geometric Moments," International Conference on Image Analysis and Processing, pp. 807-812, 2007.
  26. K. Deguchi, T. Izumitani, and H. Hontani, "Detection and enhancement of line structures in an image by anisotropic diffusion," Pattern Recognition Letters, Vol.23, No.12, pp. 1399-1405, 2002. https://doi.org/10.1016/S0167-8655(02)00100-9
  27. A.K. Jain, N.R. Ratha, and S. Lakhsmanan, "Object detection using Gabor filters," Pattern Recognition, Vol.30, No.2, pp. 295-309, 1997. https://doi.org/10.1016/S0031-3203(96)00068-4
  28. A.K. Jain and F. Farrokhnia, "Unsupervised texture segmentation using Gabor filters," Pattern Recognition, Vol.24, No.12, pp. 1167-1186, 1991. https://doi.org/10.1016/0031-3203(91)90143-S
  29. M.S. Lewis-Beck, Data Analysis: an Introduction, Sage Publications Inc, 1995.
  30. P. Hajek, T. Feglar, J. Rauch and D. Coufal. "The GUHA method, data preprocessing and mining," Database Support for Data Mining Applications, Vol.2682, pp. 135-153, 2004. https://doi.org/10.1007/978-3-540-44497-8_7