DOI QR코드

DOI QR Code

진주조개 Pinctada fucata martensii의 실내월동을 위한 저온노출에 따른 생리적 변화

Physiological Response of the Pearl Oyster, Pinctada fucata martensii, to Low Water Temperature: a Preliminary Study for Indoor Overwintering

  • 이정미 (경상남도수산자원연구소) ;
  • 이상원 (경상남도수산자원연구소) ;
  • 조상만 (군산대학교 해앙생명양식학과)
  • 투고 : 2009.09.08
  • 심사 : 2010.02.04
  • 발행 : 2010.02.28

초록

With the aim of developing and indoor overwintering technique for Pearl oyster, Pinctada fucata martensii, the metabolic rates of young oysters (52.4-83.0 mm in shell length) were measured for 2 weeks at water temperatures of 8, 10, 12, and $14^{\circ}C$. The filtration rate (FR) ranged 0 to $4.84\;L\;h^{-1}gDW^{-1}$ (mean, $0.02{\pm}0.06 $ to $3.12{\pm}1.45$), with significant changes observed over thme except for the case of a water temperature of $14^{\circ}C$. Respiration rate (R) ranged from 0 to $2.370\;mgO2\;h^{-1}gDW^{-1}$ (mean, 0 to $1.77{\pm}0.37$), with significant respiratory disorders observed at temperatures below $12^{\circ}C$; in contrast, the rate increased on the $14^th$ day of the experiment in the case of a temperature of 14$^{\circ}C$. No significant difference was observed among the different water temperatures in terms of excretion rate (E) or absorption efficiency (Abs.eff), except for a significant decrease in aerobic metabolism in the case of water temperature of $8^{\circ}C$. The estimated scope for growth (SFG) ranged from -9.1 to $126.9\;J\;h^{-1}gDW^{-1}$ (mean. $-4.1{\pm}2.6$ to $82.85{\pm}42.6$). A significant energy Joss was found at $8^{\circ}C$, with negative SFG observed throughout the experiment and a gradual energy decrease observed over time at water temperatures of $10^{\circ}C$ and 120C. However. SFG remained positive throughout the experiment in the case of $14^{\circ}C$. The estimated minimum energy requirement, assessed from energy expenditure, is $8.00-34.24\;J\;h^{-1}gDW^{-1}$ (mean, $17.67{\pm}6.17$). In conclusion, the lowest temperature suitable for indoor overwintering is above $14^{\circ}C$.

키워드

참고문헌

  1. Alexander JA, Stoecker DK, Meritt DW, Alexander ST, Padeletti A, Johns D, Van Heukelem L and Glibert PM. 2008. Differential production of feces and pseudofeces by the oyster Crassostrea ariakensis when exposed to diets containing harmful dinoflagellate and raphidophyte species. J Shellfish Res 27, 567-579. https://doi.org/10.2983/0730-8000(2008)27[567:DPOFAP]2.0.CO;2
  2. Baldwin LG and Kramer KJM. 1994. Biological early warning systems (BEWS). In: Biomonitoring of coastal waters and estuaries. CRC, Florida, U.S.A., 1-23.
  3. Bayne BL, Thompson RJ and Widdows J. 1973. Some effects of temperature and food on the rate of oxygen consumption by Mytilus edulis L. In: Effects of Temperature on Ectothermic Organism: ecological implications and mechanisms of compensation. Wieser Wed. Springer, Berlin, New York U.S.A., 181- 193.
  4. Bayne BL. 1976. Physiological integrations. In: Marine Mussels: Their ecology and physiology. Bayne BL, ed. Cambridge University Press, New York, U.S.A., 261-292.
  5. Bayne BL and Newell RC. 1983. Physiological energetics of marine mollusca. In : The mollusca. Saleuddin A and Wilbur K eds. Academic press, New York, U.S.A., 407-515.
  6. Bayne BL. 1985. Physiological measurements. In: The effects of stress and pollution on marine animals. Bayne BL and Brown DA, eds. Praeger Scientific, New York, U.S.A., 3-45.
  7. Bayne BL, Hawkins AJS and Navarro E. 1987. Feeding and digestion by the mussel Mytilus edulis L. (Bivalvia: Mollusca) in mixtures of silt and algal cells at low concentrations. J Exp Mar BioI Ecol 111, 1-22. https://doi.org/10.1016/0022-0981(87)90017-7
  8. Bayne BL, Hawkins AJS, Navarro E and Iglesias IP. 1989. Effects of seston concentration of feeding, digestion and growth in the mussel Mytilus edulis. Mar Ecol Prog Ser 55, 47-59. https://doi.org/10.3354/meps055047
  9. Chen YC. 2003. Immobilized Isochrysis galbana (Haptophyta) for long-term storage and applications for feed and water quality control in clam (Meretrix fusoria) cultures. J Appl Phycol 15, 439-444. https://doi.org/10.1023/A:1026071714199
  10. Conover RJ. 1966. Assimilation of organic matter by zooplankton. Limnol Oceanogr 18, 673-678.
  11. Cranford PJ. 2001. On evaluating the reliability of filtration rate measurements on bivalves. Mar Ecol Porg Ser 215, 303-305. https://doi.org/10.3354/meps215303
  12. Dame RF. 1996. System metabolism and nutrient cycling. In: Ecology of Marine Bivalves: an Ecosystem Approach. Dame RF ed. CRC Press, Florida, U.S.A., 143-167.
  13. Ellis J, Cummings V, Hewitt J, Thrush S and Norkko A. 2002. Determining effects of suspended sediment on condition of a suspension feeding bivalve (Atrina zelandica): results of a survey, a laboratory experiment and a field transplant experiment. J Exp Mar BioI Ecol 267, 147-174. https://doi.org/10.1016/S0022-0981(01)00355-0
  14. Epifanio CE and Ewart J. 1977. Maximum ration of four algal diets for the oyster Crassostrea virginica Gmelin. Aquaculture 11, 13-29. https://doi.org/10.1016/0044-8486(77)90150-8
  15. Fernandez-Reiriz MJ, Navarro JM and Labarta U. 2005. Enzymatic and feeding behavior of Argopecten purpuratus under variation in salinity and food supply. Comp. Biochem Physiol A Mol Integr Physiol 141, 153-163. https://doi.org/10.1016/j.cbpb.2005.04.020
  16. Filgueira R, Labarta U and Fernandez-Reiriz MJ. 2006. Flow-through chamber method for clearance rate measurements in bivalves: design and validation of individual chambers and mesocosm. Limnol Oceanogr Methods 4, 284-292. https://doi.org/10.4319/lom.2006.4.284
  17. Foster-Smith RL. 1975. The effect of concentration of suspension on the filtration rates and pseudofaecal production for Mytilus edulis L., Cerastoderma edule (L.) and Venerupis pullastra (Montagu). J Exp Mar BioI Ecol 17, 1-22. https://doi.org/10.1016/0022-0981(75)90075-1
  18. Fujii T and Toda S. 1991. Open and close shellmovement of the mussel, Mytilus edulis L. under natural conditions. Bull Natl Res Inst Aquaculture 20, 33-40.
  19. Galtsoff PS. 1928. Experimental study of the function of the oyster gill and its bearing on the problems of oyster culture and sanitary control of the oyster industry. Bull US Fish 44, 1-39.
  20. Galimany E, Sunila I, Hegaret HE, Ram M and Wikfors GH. 2008. Pathology and immune response of the blue mussel (Mytilus edulis L.) after an exposure to the harmful dinoflagellate Prorocentrum minimum. Harmful Algae 7, 630-638. https://doi.org/10.1016/j.hal.2008.01.001
  21. Gnaiger E. 1983. Calculation of energetic and biochemical equivalents of respiratory oxygen consumption. In: Polarographic Oxygen Sensors. Aquatic and Physiological Applications. Gnaiger E and Forstner H eds. Springer, Berlin, New York, U.S.A., 337-345.
  22. Grant J. 2000. The relationship of bioenergetics and the environment to the field growth of cultured bivalves. J Exp Mar BioI Ecol 200, 239-256.
  23. Griffiths CL and JA King. 1979. Some relationships between size, food availability and energy balance in the ribbed mussel Aulacomia ater. Mar BioI 51, 141-149. https://doi.org/10.1007/BF00555193
  24. Guiliard HR. 1957. Some factors in the use of nanoplankton cultures as food for larval and juvenile bivalves. Proc Nat Shellfish Assoc 48, 134-142.
  25. Haven DS, Morales-Alamo R. 1970. Filtration of particles froms uspension by the American oyster Crassostrea viriginica, BioI Bull Woods Hole 139, 248-264. https://doi.org/10.2307/1540081
  26. Hawkins AJS, Smith RFM, Bayne BL and Heral M. 1996. Novel observations underlying the fast growth of suspension feeding shellfish in turbid environments: Mytilus edulis. Mar Ecol Prog Ser 131, 179-190. https://doi.org/10.3354/meps131179
  27. Hegaret H, Wikfors G, Soudant P, Lambert C, Shumway S, Berard J and Lassus P. 2007. Toxic dinoflagellates (Alexandrium fundyense and A. catenella) have minimal apparent effects on oyster hemocytes. Mar Biol 152, 441-447. https://doi.org/10.1007/s00227-007-0703-3
  28. Hur YB.2003. Dietary value of microalgae for larvae culture of Pacific oyster, Crassostrea gigas. Ph.D. thesis, Pukyoung National University, Pusan, Korea.
  29. Iglesias JIP, Urrutia MB, Navarro E, Alvarez-Jorna P, Larretxea X, Bougrier Sand Heral M. 1996. Variability of feeding processes in the cockle Cerastoderma edule (L.) in response to changes in seston concentration and composition. J Exp Mar BioI Ecol 197, 121-143. https://doi.org/10.1016/0022-0981(95)00149-2
  30. Jeong JG, Seo YJ, Park JS, Pyo MG, Yun DH, Ji HS and Lee YG. 2005. Proposal for own label product of Tongyeong pearl. 21st Century Economy and Society Institute, Goyang, Korea.
  31. Jeong WG and Cho S-M. 2007. Long-term effect of polycyclic aromatic hydrocarbon on physiological metabolisms of the Pacific oyster, Crassostrea gigas. Aquaculture 265, 343-350. https://doi.org/10.1016/j.aquaculture.2007.02.021
  32. Jiang, A-I, Lin J and Wang C-h. 2008. Physiological energetics of the ascidian Styela clava in relation to body size and temperature. Comp Biochem Physiol A 149, 129-136. https://doi.org/10.1016/j.cbpa.2006.08.047
  33. Kim IO. 1969. Study on the culture of pearl oyster I . On the wintering and growth of pearl oyster, Pinetada martensii. Bull Nat Fish Res Dev Inst 4, 109-118.
  34. Kim M-C, Cho S-M and Jeong W-G. 2007. Short-term physiological response of the Pacific oyster, Crassostrea gigas, on exposure to varying levels of polycyclic aromatic hydrocarbon. Aquae Res 38, 1612-1618. https://doi.org/10.1111/j.1365-2109.2007.01821.x
  35. Kuwatani Y. 1965. A study on feeding mechanism of Japanese pearl oyster, Pinetada martensii (Dunker), with special reference to passage of charcoal particles in the digestive system. Bull Jap Soc Sci Fish 31, 789-798. https://doi.org/10.2331/suisan.31.789
  36. Langton RW. 1977. Digestive rhythms in the mussel Mytilus edulis. Mar Biol 41, 53-58. https://doi.org/10.1007/BF00390581
  37. Lefebvre SA, Barill L and Clerc M. 2000. Pacific oyster (Crassostrea gigas) feeding responses to a fish-farm effluent. Aquaculture 187, 185-198. https://doi.org/10.1016/S0044-8486(99)00390-7
  38. Loosanoff VL. 1939. Effect of temperature upon shell movements of clams, Venus mercenaria (L.). Bio Bull 76, 171-182. https://doi.org/10.2307/1537857
  39. Lucas JS. 2008. Feeding and Metabolism. In: The Pearl Oyster. Southgate PC and Lucas J eds. Elsevier, Oxford U.K., 103-180.
  40. MacDonald BA, Bacon GS and Ward JE. 1998. Physiological responses of infaunal (Mya arenaria) and epifaunal (Plaeopeeten magellanieus) bivalves to variations in the concentration and quality of suspended particles II. Absorption efficiency and scope of growth. J Exp Mar Biol Ecol 219, 127-141. https://doi.org/10.1016/S0022-0981(97)00178-0
  41. Nagai K, Honjo T, Go J, Yamashita H and Oh SJ. Detecting the shellfish killer Heteroeapsa eireularisquama (Dinophyceae) by measuring bivalve activity with a Hall element sensor. Aquaculture 225, 395-401.
  42. Navarro JM and Winter JE. 1982. Ingestion rate, assimilation efficiency and energy balance in Mytilus ehilensis in relation to body size and different algal concentrations. Mar BioI 67, 255-266. https://doi.org/10.1007/BF00397666
  43. Navarro JM, Urrutia GX and Carrasco C. 2006. Scope for growth versus actual growth in the juvenile predatory gastropod Chorus giganteus. J Mar BioI Assoc UK 86, 1423-1428. https://doi.org/10.1017/S0025315406014469
  44. Norkko J, Pilditch CA, Thrush SF and Wells RMG. 2005. Effects of food availability and hypoxia on bivalves: the value of using multiple parameters to measure bivalve condition in environmental studies. Mar Ecol Prog Ser 298, 205-218. https://doi.org/10.3354/meps298205
  45. Numaguchi K. 1994. Effect of Water Temperature on the Filtration Rate of Japanese Pearl Oyster, Pinctada fucata martensii. Suisanzoshoku 42, 1-6.
  46. Pales Espinosa E, Allam B and Ford SE. 2008. Particle selection in the ribbed mussel Geukensia demissa and the Eastern oyster Crassostrea virginiea: Effect of microalgae growth stage. Estuar Coast Shelf S 79, 1-6. https://doi.org/10.1016/j.ecss.2008.02.022
  47. Park KD. 2002. Overwintering of pearl oyster (Pineta fueata martensii). J Korean Aquae Soc 14, 67-74.
  48. Phillips DJH and Rainbow PS. 1994. Monitoring the effect of contaminants. In: Biomonitoring of Trace Aquatic Contaminants. Chapman & Hall, Bristol, U.K., 243-288.
  49. Riisgard HU and Larsen PS. 2000. Comparative ecophysiology of active zoobenthic filter feeding, essence of current knowledge. J Sea Res 44, 169-193. https://doi.org/10.1016/S1385-1101(00)00054-X
  50. Riisgard HU. 2001. On measurement of filtration rates in bivalves: the stony road to reliable data: review and interpretation. Mar Ecol Prog Ser 211,275-291. https://doi.org/10.3354/meps211275
  51. Robinson WE, Wehling WE and Morse MP. 1984. The effect of suspended clay on feeding and digestive efficiency of the surf clam, Spisula solidissima (Dillwyn). J Exp Mar BioI Ecol 74, 1-12. https://doi.org/10.1016/0022-0981(84)90034-0
  52. Sejr MK, Petersen JK, Jensen KT and Rysgaard SE. 2004. Effects of food concentration on clearance rate and energy budget of the Arctic bivalve Hiatella aretiea (L) at subzero temperature. J Exp Mar BioI Ecol 311, 171-183. https://doi.org/10.1016/j.jembe.2004.05.005
  53. Shumway SE and Cucci TL. 1987. The effects of the toxic dinoflagellate Protogonyaulax tamarensis on the feeding and behaviour of bivalve molluscs. Aquat Toxicol 10, 9-27. https://doi.org/10.1016/0166-445X(87)90024-5
  54. Solorzano L. 1969. Determination of ammonia in natural waters by the phenol hypochlorite method. Limnol Oceanogr 14, 799-801. https://doi.org/10.4319/lo.1969.14.5.0799
  55. Sprung M. 1984. Physiological energetics of mussel larvae (Mytilus edulis). I. Shell growth and biomass. Mar Ecol Prog Ser 17, 283-293. https://doi.org/10.3354/meps017283
  56. Strickland JDH and Parsons TR. 1972. A practical handbook of seawter analysis. J Fish Res Board Can 167, 311.
  57. Tongyeong city. 2005. Cultural fisheries. In: Statistic of Tongyeong. Retrieved from http;//stat.tongyeong.go.kr/stat/view/default.asp.
  58. Tsangaris C, Papthanassiou E and Nicolaidou A. 2008. Biochemical biomarkers and overall health status of mussels Mytilus galloprovincialis exposed to nickel and chromium. Chem Ecol 24, 315-327. https://doi.org/10.1080/02757540802368650
  59. Velasco LA. 2006. Effect of microalgal concentration and water temperature on the physiology of the Caribbean scallops Argopecten nucleus and Nodipecten nodosus. J Shellfish Res 25, 823-831. https://doi.org/10.2983/0730-8000(2006)25[823:EOMCAW]2.0.CO;2
  60. Widdows J. 1978. Combined effect of body size, food concentration and season on the physiology of Mytilus edulis. J Mar BioI Assoc UK 58, 109-124. https://doi.org/10.1017/S0025315400024449
  61. Widdows J, Fieth P and Worrall CM. 1979. Relationships between seston, available food and feeding activity in the common mussel Mytilus edulis. Mar BioI 50, 195-207. https://doi.org/10.1007/BF00394201
  62. Widdows J. 1985. Physiological procedures. In: The Effects of Stress and Pollution on Marine Animals. Bayne BL and Brown DA, eds. Praeger Scientific, New York, U.S.A., 161-178.
  63. Widdows J. 2001. Bivalve clearance rates: inaccurate measurements or inaccurate reviews and misrepresentation? Mar Ecol Prog Ser 221, 303-305. https://doi.org/10.3354/meps221303
  64. Winter JE. 1978. A review on the knowledge of suspension-feeding in lamellibranchiate bivalves, with special reference to artificial aquaculture systems. Aquaculture 13, 1-33. https://doi.org/10.1016/0044-8486(78)90124-2
  65. Yoo SK, Chang YJ and Lim HS. 1986. Growth comparison of pearl oyster, Pinctada fucata between the two culturing areas. Bull Korean Fish Soc 19, 593-598.
  66. Yoo SK. 2000. Pearl oyster. In: Shallow Seawater Culture. Kudeok Publ, Pusan, Korea, 159-186.
  67. Yu N and Culver DA. 1999. Estimating the effective clearance rate and refilration by zebra mussels, Dreissena polymorpha, in a stratified reservoir. Freshwater Biol 41, 481-492. https://doi.org/10.1046/j.1365-2427.1999.00393.x
  68. Yukihira H, Lucas JS and Klumpp DW. 2000. Comparative effects of temperature on suspension feeding and energy budgets of the pearl oysters Pinctada margaritifera and P. maxima. Mar Ecol Prog Ser 195, 179-188. https://doi.org/10.3354/meps195179
  69. Zhuang SH and Wang ZQ. 2004. Influence of size, habitat and food concentration on the feeding ecology of the bivalve, Meretrix meretrix Linnaeus. Aquacutlure 241, 689-699. https://doi.org/10.1016/j.aquaculture.2004.09.005