DOI QR코드

DOI QR Code

유동구조연성해석을 통한 컨테이너 크레인의 경보시스템용 기준 데이터 도출

Deriving Reference Data for Alarm System in a Container Crane by Fluid-Structure Interaction Analysis

  • 투고 : 2010.03.11
  • 심사 : 2010.06.16
  • 발행 : 2010.08.01

초록

본 연구는 풍하중 하에서 컨테이너 크레인의 전도사고 예방을 위한 경보시스템용 기준데이터를 도출하기 위하여 수행되었다. 분석방법으로 유동구조연성해석과 풍동실험이 사용되었으며, 크레인의 안정성에 대한 풍하중의 영향을 평가하기 위하여 컨테이너 터미널에서 널리 사용되고 있는 50 톤급 컨테이너 크레인이 해석모델로 선정되고, 19 가지 풍향이 설계변수로 채택되었다. 연구방법은 먼저 경계층풍동을 사용하여 풍향에 따른 컨테이너 크레인 모형에 대한 풍동실험을 수행한 후, ANSYS 와 CFX 를 사용하여 실제 크레인의 유동구조연성해석을 수행하였다. 다음으로 유동구조연성해석을 통해 산출된 부상력과 풍동실험을 통해 도출된 부상력을 비교하여 두 방법에 있어서 차이을 보정하기 위한 식을 제시하였다.

This study was conducted to provide reference data for designing an alarm system that can help prevent the overturning of a container crane under wind load. Two methods, namely, fluid-structure interaction (FSI) analysis and windtunnel test, were adopted in this investigation. To evaluate the effect of wind load on the stability of the crane, a 50-ton-class container crane that is widely used in container terminals was adopted as the analysis model and 19 values were considered as design parameters for wind direction. First, the wind-tunnel test for the reduced-scale container crane model was performed according to the wind direction by using an Eiffel type atmospheric boundary-layer wind tunnel. Next, the FSI analysis for the real-scale container crane was conducted using ANSYS and CFX. Then, the uplift force determined from the FSI analysis was compared with that determined from the wind-tunnel test. Finally, a formula to compensate for the difference between the results of the FSI analysis and the wind-tunnel test was proposed.

키워드

참고문헌

  1. Tsinker, G. P., 2004, Port Engineering : Planning, Construction, Matenance, and Security, John Wiley & Sons, Inc., pp. 37-41.
  2. Lee, J. M., Han, D. S., Han, G. J. and Jeon, Y. H., 2005, “A Study on the Wedge Angle of the Rail Clamp according to the Design Wind Sped Criteria Change,” IJNPR, Vol. 29, No. 7, pp. 641-646.
  3. Lee, S. W., Shim, J. J., Han, D. S., Han, G. J. and Kim, T. H., 2005, “The Comparison of the Stability of a Container Crane according to various Wind Load Design Codes,” J. of KINPR, Vol. 29, No. 6, pp. 561-566. https://doi.org/10.5394/KINPR.2005.29.6.561
  4. Lee, S. W., Shim, J. J., Han, D. S., Han, G. J. and Lee, K. S., 2007, “An Experimental Analysis of the Effect of Wind Load on the Stability of a Container Crane,” JMST, Vol. 21, No. 3, pp. 448-454. https://doi.org/10.1007/BF02916306
  5. Teixeira, F. P. and Awruch, M. A., 2005, “Numerical Simulation of Fluid-Structure Interaction using the Finite Element Method,” Computers & Fluids, Vol. 34, pp. 249-273. https://doi.org/10.1016/j.compfluid.2004.03.006
  6. Han, D. S., Lee, S. W. and Han, G. J., 2008, “Comparison of Finite Element Analysis with Wind Tunnel Test on Stability of a Container Crane,” J. of KSPSE, Vol. 12, No. 6, pp. 29-35.
  7. Jang, H. S., Kim, Y. S., Hwang, K. S., 1997, “Introduction of Wind Tunnel Laboratory in Hyundai Institute of Construction Technology,” J. of WEIK, Vol. 1, No. 1, pp. 58-65.
  8. Ministry of Land, Transport and Maritime Affairs of Korean Government, 2000, Design Criteria of a Road Bridge.
  9. Ministry of Land, Transport and Maritime Affairs of Korean Government, 2000, Load Criteria of Building Structures.
  10. BS 2573, 1983, Rules for the Design of Cranes, British Standards UK.