DOI QR코드

DOI QR Code

Prediction of Hydraulic Performance of a Scaled-Down Model of SMART Reactor Coolant Pump

스마트 원자로냉각재펌프의 축소모형에 대한 수력성능 예측

  • Received : 2010.03.15
  • Accepted : 2010.06.07
  • Published : 2010.08.01

Abstract

An analysis was conducted to predict the hydraulic performance of a reactor coolant pump (RCP) of SMART at the off-design as well as design points. In order to reduce the analysis time efficiently, a single passage containing an impeller and a diffuser was considered as the computational domain. A stage scheme was used to perform a circumferential averaging of the flux on the impeller-diffuser interface. The pressure difference between the inlet and outlet of the pump was determined and was used to compute the head, efficiency, and break horse power (BHP) of a scaled-down model under conditions of steady-state incompressible flow. The predicted curves of the hydraulic performance of an RCP were similar to the typical characteristic curves of a conventional mixed-flow pump. The complex internal fluid flow of a pump, including the internal recirculation loss due to reverse flow, was observed at a low flow rate.

본 연구에서는 SMART 원자로의 사류형 원자로냉각재펌프의 축소모형에 대한 수력성능을 예측하기 위하여 설계점을 포함한 다양한 탈설계점에서의 해석을 수행하였다. 계산시간의 효율성을 위하여 임펠러와 디퓨저 각 1개 유로로 이루어진 계산영역을 해석대상으로 선정하였다. 임펠러와 디퓨저간의 정보교환을 위하여 스테이지 기법을 사용하였다. 정상상태 비압축성 유동조건에서 축소모형의 수력성능특성을 파악하기 위하여 해석영역의 입구와 출구에서 압력차를 측정하여 양정, 효율과 축동력을 산출하였다. 수력성능 곡선은 일반적인 사류펌프의 성능특성을 잘 모사하는 것으로 나타났다. 저유량에서의 펌프 내부유동의 복잡한 흐름을 확인 하였다.

Keywords

References

  1. Choi, K. Y., Kim, Y. S., Yi, S. J. and Baek, W. P., 2008, "Development of a Pump Performance Model for an Integral Effect Test Facility," Nuclear Engineering and Design, Vol. 238, No. 10, pp. 2614-2623. https://doi.org/10.1016/j.nucengdes.2008.04.005
  2. Kim, M. W., Lee, J. S., Park, J. S., Kim, J. I. and Kim, K. K., 2003, "Computational Performance Prediction of Main Coolant Pump for the Integral Reactor SMART," Jour. of Computational Fluids Engineering, Vol. 8, No. 3, pp. 32-40.
  3. Muggli, F. A., Holbein, P. and Dupont, P., 2002, “CFD Calculation of a Mixed Flow Pump Characteristic from Shutoff to Maximum Flow,” Jour. of Fluids Engineering, Vol. 124, No. 3, pp. 798-802. https://doi.org/10.1115/1.1478061
  4. Ahn, H. J., Kim, J. H. and Kim, K. Y., 2009, "Numerical Analysis of Three-Dimensional Flow in a Mixed-Flow Pump," Spring Conference of the KSCFE, pp. 223-226.
  5. Yoon, E. S., Oh, H. W. and Ahn, J. W., 2003, "Design and Performance Analysis of Mixed-Flow Pumps for Waterjet Marine Propulsion," Jour. of Fluid Machinery, Vol. 6, No. 2, pp. 41-46. https://doi.org/10.5293/KFMA.2003.6.2.041
  6. Yoon, E. S., Oh, W. H. and Park, S. J., 2006, "Performance Evaluation of a Main Coolant Pump for Modular Nuclear Reactor by Computational Fluid Dynamics," Trans. of the KSME(B), Vol. 30, No. 8, pp. 818-824. https://doi.org/10.3795/KSME-B.2006.30.8.818
  7. Wright, T., 1999, "Fluid Machinery : Performance, Analysis and Design," CRC Press., London, pp. 125-127.
  8. Bardina, J. E., Huang, P. G. and Coakley, T. J., 1997, "Turbulence Modeling Validation Testing and Development," NASA Technical Memorandum 110446, Ames Research Center, California. pp. 14-16.
  9. ANSYS, Inc., 2009, "ANSYS CFX-Solver Modeling Guide," ANSYS, Inc., Pennsylvania, pp. 331-332.
  10. Choi, C. H., Noh, J. G., Kim, D. J., Hong. S. S and Kim, J. H., 2006, "Performance Prediction of a Turbopump System," Jour. of the KSAS, Vol. 34, No. 4, pp. 70-75. https://doi.org/10.5139/JKSAS.2006.34.4.070