DOI QR코드

DOI QR Code

A Steel Ball Impact Damage Behavior of RS-SiC Ceramic Materials

RS-SiC 세라믹 재료의 강구 입자충격 손상 거동

  • Oh, Sang-Yeob (School of Mechanical and Automotive Engineering, Kyungpook Nat'l Univ.)
  • 오상엽 (경북대학교 기계자동차공학부)
  • Received : 2010.03.26
  • Accepted : 2010.06.10
  • Published : 2010.08.01

Abstract

In this study, the effect of the C/SiC composition ratio on the impact damage of a reaction sintered SiC (RS-SiC) plates was evaluated. An impact test was conducted by using an air gun. The impacter used was a steel ball with a diameter of 2 mm, and the impact velocities were 113, 122, and 180 m/s. The RS-SiC plates were $20\times20\times3$ mm with different C/SiC composition ratios. The ring crack diameters damaged by a steel ball were determined using SEM images. It was observed that the maximum diameter increased with increasing impact velocity, and it rapidly changed with increasing C/SiC composition ratio because of the effect of residual Si and the variation flexural strength. Cone cracks were formed in the case of C/SiC composition ratios of 0.4~0.5, this indicated that the impact damage changed from a ring crack to a cone crack in this critical range of C/SiC composition ratios. The C/SiC composition ratio of 0.3 was determined to be the optimal ratio for the RS-SiC manufacturing process.

본 연구에서는 반응소결 탄화규소(RS-SiC)의 제조공정 중에서 C/SiC 복합 비율(0.1, 0.3, 0.4, 0.5, 0.6, 0.7, 1.0)이 외부입자충격 손상 거동에 미치는 영향을 평가하였다. 충격시험은 공기총(air-gun)을 사용하였으며, 직경 2 mm 강구를 113 m/s, 122 m/s, 180 m/s의 충격속도로 RS-SiC 판재($20\times20\times3$ mm)에 충격시켜 발생된 링크랙의 직경 변화 및 콘크랙의 발생 거동을 SEM 영상으로 평가하였다. 결과적으로 RS-SiC에 발생한 링크랙의 최대직경이 충격속도가 증가함에 따라 대체로 증가하였지만, C/SiC 복합 비율에 따라서는 급격한 변화를 보였다. 이는 C/SiC 복합 비율에 따라 잔류 Si 함량 및 굽힘강도 변화의 영향으로 볼 수 있다. 특히 C/SiC 복합 비율이 0.4~0.5 범위에서 콘크랙이 발생됨에 따라 링크랙에서 콘크랙의 발생으로 변화되는 충격손상 메커니즘의 임계영역으로 판단할 수 있다. 아울러 콘크랙의 발생 임계영역을 고려할 때, RS-SiC 최적 제조 공정으로서 C/SiC 혼합 비율을 최대 0.3으로 하는 것이 효과적이다.

Keywords

References

  1. Jones, R. H., Snead, L. L., Kohyama, A. and Fenici, P., 1998, "Recent Advances in the Development of SiC/SiC as a Fusion Structure Material," Fusion Engineering and Design, Vol. 41, pp. 15-24. https://doi.org/10.1016/S0920-3796(98)00285-3
  2. Kotani, M., Katoh, Y. and Kohyama, A., 2002, "Process Design for SiC/SiC Composite with Polymeric Precursor," Advanced SiC/SiC Ceramic Composites: Developments and Applications in Energy Systems, Ceramic Transactions, Vol. 144, pp. 97-103.
  3. Suyama, S., Itoh, Y., Kohyama, A. and Katoh, Y., 2003, "Effect of Residual Silicon Phase on Reaction-Sintered Silicon Carbide," Advanced SiC/SiC Ceramic Composites: Developments and Applications in Energy Systems, Ceramic Transactions, Vol. 144, pp. 181-188.
  4. Araki, H., Noda, T., Yang, W., Hu, Q., Suzuki, H. and Kohyama, A., 2002, "Flexual Properties of Several SiC Fiber-Reinforced CVI- SiC Matrix Composites," Advanced SiC/SiC Ceramic Composites: Developments and Applica- tions in Energy Systems, Ceramic Transactions, Vol. 144, pp. 281-288.
  5. Kohyama, A. and Katoh, Y., 2002, "Overview of CREST-ACE Program for SiC/SiC Ceramic Composites and Their Energy System Applications," Advanced SiC/SiC Ceramic Composites: Developments and Applications in Energy Systems, Ceramic Transactions, Vol. 144, pp. 3-18.
  6. Lee, S. P., Yoon, H. K. and Kohyama, A., 2001, "Fabrication of SiC/SiC Composites by Reaction Sintering Process," Proceedings of the KSME 2001 Fall Annual Meeting, 01F005, pp. 27-31.
  7. Jin, J. O., Lee, S. P., Lee, J. K., Yoon, H. K. and Kohyama, A., 2003, "Characterization of Monolithic RS-SiC and RS-SiCf/SiC Composite Materials," Proceedings of the KSME 2003 Spring Annual Meeting, A, pp. 376-380.
  8. Lee, S. P., 2005, "Fabrication of Reaction Sintered SiC Materials by Complex Slurry with Nano Size Particles," Trans. of the KSME A, Vol. 29, No. 3, pp. 425-431. https://doi.org/10.3795/KSME-A.2005.29.3.425
  9. Shin, H. S., 1996, "Loading Rate Effects During Static Indentation and Impact on Silicon Carbide with Small Sphere," Trans. of the KSME A, Vol. 20, No. 12, pp. 3847-3855.
  10. Oh, S. Y., 2002, "Analysis of Impact Fracture Behavior in Structural Brittle Materials and Dissimilar Laminated Materials," Ph. D. Thesis, Kyungpook National University, Daegu, Korea.
  11. Oh, S. Y., Shin, H. S. and Suh, C. M., 2002, "Evaluation of Residual Strength in Damaged Brittle Materials," Trans. of the KSME A, Vol. 26, No. 5, pp. 932-938. https://doi.org/10.3795/KSME-A.2002.26.5.932
  12. Shin, H. S., Oh, S. Y., Choi, S. Y., Suh, C. M. and Chang, S. N., 2002, "Impact Fracture Behavior of Ceramic Plates Using Instrumented Long Bar," Trans. of the KSME A, Vol. 26, No. 4, pp. 787-793. https://doi.org/10.3795/KSME-A.2002.26.4.787
  13. Oh, S. Y., Shin, H. S. and Suh, C. M., 2002, "Variation of Cone Crack Shape in Ceramic Materials According to Spherical Impact Velocity," Trans. of the KSME A, Vol. 26, No. 2, pp. 380-386. https://doi.org/10.3795/KSME-A.2002.26.2.380
  14. Ohgushi, K. and Ichikawa, M., 1995, "Fracture Mechanics Study of Ring Crack Initiation in Ceramics by Sphere Indentation," Trans. Jpn. Soc. Mech. Eng., Series A, Vol. 61, pp. 953-958.
  15. Lawn, B. R., 1998, "Indentation of Ceramics with Sphere : A Century after Hertz," J. Am. Ceram. Soc., Vol. 8, pp. 1977-1994.
  16. Shockey, D. A., Erlich, D. C. and K. C., 1990, "Particle Impact Damage in Silicon Nitride," J. Am. Ceram. Soc., Vol. 73, pp. 1613-1619. https://doi.org/10.1111/j.1151-2916.1990.tb09804.x