• 제목/요약/키워드: 콘크랙

검색결과 12건 처리시간 0.017초

RS-SiC 세라믹 재료의 강구 입자충격 손상 거동 (A Steel Ball Impact Damage Behavior of RS-SiC Ceramic Materials)

  • 오상엽
    • 대한기계학회논문집A
    • /
    • 제34권8호
    • /
    • pp.1015-1021
    • /
    • 2010
  • 본 연구에서는 반응소결 탄화규소(RS-SiC)의 제조공정 중에서 C/SiC 복합 비율(0.1, 0.3, 0.4, 0.5, 0.6, 0.7, 1.0)이 외부입자충격 손상 거동에 미치는 영향을 평가하였다. 충격시험은 공기총(air-gun)을 사용하였으며, 직경 2 mm 강구를 113 m/s, 122 m/s, 180 m/s의 충격속도로 RS-SiC 판재($20\times20\times3$ mm)에 충격시켜 발생된 링크랙의 직경 변화 및 콘크랙의 발생 거동을 SEM 영상으로 평가하였다. 결과적으로 RS-SiC에 발생한 링크랙의 최대직경이 충격속도가 증가함에 따라 대체로 증가하였지만, C/SiC 복합 비율에 따라서는 급격한 변화를 보였다. 이는 C/SiC 복합 비율에 따라 잔류 Si 함량 및 굽힘강도 변화의 영향으로 볼 수 있다. 특히 C/SiC 복합 비율이 0.4~0.5 범위에서 콘크랙이 발생됨에 따라 링크랙에서 콘크랙의 발생으로 변화되는 충격손상 메커니즘의 임계영역으로 판단할 수 있다. 아울러 콘크랙의 발생 임계영역을 고려할 때, RS-SiC 최적 제조 공정으로서 C/SiC 혼합 비율을 최대 0.3으로 하는 것이 효과적이다.

취성재료의 충격파괴에 관한 연구 II (A Study on the Impact Fracture of Fragile Materials)

  • 양인영;김택현;정낙규;이상호;김선규
    • 대한기계학회논문집
    • /
    • 제14권6호
    • /
    • pp.1417-1425
    • /
    • 1990
  • 본 연구에서는 취성재료인 유리판이 충격을 받을 때 생기는 크랙패턴 특히, 콘 크랙의 발생 현상을 이론적으로 규명하여 취성재료의 충격파괴방지에 도움이 되게 하고져 하였으며, 판두께방향의 변형을 고려한 제1보에서의 삼차원 동탄성이론에 의한 응력해석방법을 이용하여 충돌점 및 충돌점근방에서의 변형율분포를 해석하였다. 또 한 고속 및 자유낙하 충격시험을 행하여 얻은 크랙의 패턴과 본 이론해석 결과인 변형 률 분포의 수치계산 결과와 비교함으로써 콘 크랙의 발생현상을 3차원 동탄성이론을 이용한 본 충격응력해석 방법에 의한 규명하였다. 변형률 분포의 해석은 국부변형을 고려한 Hertz의 접촉이론과 Lagrange의 고전판 이론을 이용하여 구한 충격하중계수의 크기에 따라 충격하중의 함수근사식을 바꿔가며 해석하였으며 충돌점으로 부터 0.1cm 간격으로 5cm범위까지를 해석하였다.

입자충격에 의한 유리의 손상기구에 관한 실험적 연구 (An Experimental Study on Damage Mechanism of Glass Resulting Frojm Particle Impact)

  • 서창민;신형섭;황병원
    • 대한기계학회논문집A
    • /
    • 제20권6호
    • /
    • pp.1903-1912
    • /
    • 1996
  • A quantitative study of impact damage of a soda-lime glass was carried out. An initiation and a propagation of cracks by the impact of two inds of steel ball was investigated. The fron, side and rear view of cracks were observed by a stereo-microscope. And the lowering of the benidng strength due to the impact of steel balls was examined through the 4-point bending test. A transparent glass is very helpful to understand and analyze the impact damage behavior of another brittle matereial. A deagdram about crack patterns according to the threshold impact velocity was sketched. A ring crack and a cone crack were formed at the low impact velocity. And as the impact velocity was higher, initial lateral crack was generated on the slanting surface of cone crack, and radial cracks were generated from the outermost ring crack. When the impact velocity of steel balls exceed a critical velocity, the contact site of specimens were crushed. According to the propagation of a cone crack, a rapid strength degradation occurred. In the specimen having crushed region, a bending strength was converged to a constant value instead of strength degradation.

표면거칠기를 가진 유리의 입자충격 손상기구에 관한 실험적 연구 (An Experimental Study on the Damage Mechanism of Particle Impact in a Scratched Glass)

  • 서창민;정성묵;이문환
    • 대한기계학회논문집A
    • /
    • 제20권7호
    • /
    • pp.2196-2204
    • /
    • 1996
  • The damage mechanism by the impact of steel ball on the soda-lime glass having a different surface roughness was investigated. An initiation and a propagation behavior of cracks formed by each impact velocity were quantitatively studied. A 4-point bending test was carried out to evaluate the remaining bending strength of a scratched soda-lime glass which impacted by the steel ball. As the surface roughness was increased, the shape of cracks became more irregular rather than those of the smooth specimens. The phenomenon of turning up in the wing of cone cracks occurred even at the lower velocity than the critical velocity caused the crushing. The threshold velocity of cracks initiation generally became lower than those of smooth specimen. An initiation and a propagation behavior of radial cracks had no relation with the direction of scratch on the surface. The remaning benidng strength of the scratched specimen according to impact velocity had no big difference compared with those of the smooth specimen.

$Cr_2O_3$ 플라스마 용사 코팅된 유리의 입자충격에 의한 손상기구 (Damage Mechanism of Particle Impact in a $Cr_2O_3$ Plasma Coated Soda-lime Glass)

  • 서창민;이문환;김성호;장종윤
    • 한국해양공학회지
    • /
    • 제12권3호통권29호
    • /
    • pp.49-59
    • /
    • 1998
  • The damage mechanism of $Cr_2O_3$ plasma coated soda-lime glass and uncoated glass by steel ball particle impact was analyzed in this study. And the shape variation of the cracks was investigated by stereo-microscope according to the impact velocity and steel ball diameter. In order to improve the damage reduction effect by $Cr_2O_3$ coating layer, crack size was measured and surface erosion state was observed for both of two kinds of specimen after impact experiment. And the results were compared with each other. The 4-point bending test was performed according to ASTM D790 testing method to evaluate the effect of coating layer for bending strength variation. As a result, it was found that the crack size of $Cr_2O_3$ coated specimen was smaller than that of uncoated one, because of the impact absorption by interior pores in the coating layer and the load dispersion by the structural characteristic of the coating layer. For the specimens subjected to the steel ball impact, the bending strength of coated specimen was higher than that of uncoated specimen.

  • PDF

세라믹에서 충격속도에 따른 충격손상 및 콘크랙 형상의 변화 (Variation of Cone Crack Shape and Impact Damage According to Impact Velocity in Ceramic Materials)

  • 오상엽;신형섭;서창민
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.383-388
    • /
    • 2001
  • Effects of particle property variation of cone crack shape according to impact velocity in silicon carbide materials were investigated. The damage induced by spherical impact having different material and size was different according to materials. The size of ring cracks induced on the surface of specimen increased with increase of impact velocity within elastic contact conditions. The impact of steel particle produced larger ring cracks than that of SiC particle. In case of high impact velocity, the impact of SiC particle produced radial cracks by the elastic-plastic deformation at impact regions. Also percussion cone was formed from the back surface of specimen when particle size become large and its impact velocity exceeded a critical value. Increasing impact velocity, zenithal angle of cone cracks in SiC material was linearly decreasing not effect of impact particle size. An empirical equation, $\theta=\theta_{st}-\upsilon_p(180-\theta_{st})(\rho_p/\rho_s)^{1/2}/415$, was obtained from the test data as a function of quasi-static zenithal angle of cone crack($\theta_{st}$), the density of impact particle(${\rho}_p$) and specimen(${\rho}_s$). Applying this equation to the another materials, the variation of zenithal angle of cone crack could be predicted from the particle impact velocity.

  • PDF

${Al_2}}O_3}-TiO_2$ 플라즈마 코팅된 유리의 입자충격에 의한 손상기구 (Damage mechanism of particle impact in a ${Al_2}}O_3}-TiO_2$plasma coated soda-lime glass)

  • 서창민;이문환;홍대영
    • 대한기계학회논문집A
    • /
    • 제22권3호
    • /
    • pp.529-539
    • /
    • 1998
  • A quantitative study of impact damage of ${Al_2}}O_3}-TiO_2$ plasma coated soda-lime glasses was carried out and compared with that of the uncoated smooth glass specimen. The shape of cracks by the impact of steel ball was observed by stereo-microscope and the decrease of the bending strength due to the impact of steel ball was measured through the 4-point bending test. At the low velocity, cone cracks were occurred. As the impact velocity increases, initial lateral cracks were propagated on the slanting surface of a cone crack, and radial cracks were generated at the crushed site. When the impact velocity of steel ball exceeds the critical velocity, the contact site of specimen was crushed due to plastic deformation and then radial and lateral cracks were largely grown. Crack length of coated specimens was smaller than that of uncoated smooth specimen due to the effect of coating layer on the substrate surface. According to impact velocity, the bending strength of coated specimens had no significant difference, compared with that of the uncoated smooth specimen. But this represents that the bending strength of coated specimens was increased, considering the effect of sand blasting damage which was performed to increase the adhesion force of coating layer.

입자충격속도에 따른 세라믹재료의 콘크랙 형상 변화 (Variation of Cone Crack Shape in Ceramic Materials According to Spherical Impact Velocity)

  • 오상엽;신형섭;서창민
    • 대한기계학회논문집A
    • /
    • 제26권2호
    • /
    • pp.380-386
    • /
    • 2002
  • Damage behaviors induced in silicon carbide by an impact of particle having different material and size were investigated. Especially, the influence of the impact velocity of particle on the cone crack shape developed was mainly discussed. The damage induced by spherical impact was different depending on the material and size of particles. Ring cracks on the surface of specimen were multiplied by increasing the impact velocity of particle. The steel particle impact produced larger ring cracks than that of SiC particle. In the case of high velocity impact of SiC particle, radial cracks were produced due to the inelastic deformation at the impact site. In the case of the larger particle impact, the damage morphology developed was similar to the case of smaller particle one, but a percussion cone was farmed from the back surface of specimen when the impact velocity exceeded a critical value. The zenithal angle of cone cracks developed into SiC material decreased monotonically with increasing of the particle impact velocity. The size and material of particle influenced more or less on the extent of cone crack shape. An empirical equation, $\theta$= $\theta$$\sub$st/, v$\sub$p/(90-$\theta$$\sub$st/)/500 R$\^$0.3/($\rho$$_1$/$\rho$$_2$)$\^$$\frac{1}{2}$/, was obtained as a function of impact velocity of the particle, based on the quasi-static zenithal angle of cone crack. It is expected that the empirical equation will be helpful to the computational simulation of residual strength in ceramic components damaged by the particle impact.

계장화한 긴 바를 사용한 세라믹판의 충격 파괴 거동 (Impact Fracture Behavior of Ceramic Plates Instrumented Long Bar)

  • 신형섭;배영준;오상엽;김창욱;장순남
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.561-566
    • /
    • 2001
  • A long bar impact test to alumina plates(AD 85 and AD 90) was carried out by using fabricated impact testing apparatus. The apparatus adopting a long bar of 2.1m in length made it possible to measure directly the applied impact force to the specimen during bar impact. The dimension of specimens was $33{\times}33mm$ and thickness was 3.4mm. Confinement of D2=18mm outer diameter and D1=10.5mm inner diameter was used to provide contact pressure to the specimen. Contact pressure of p=100 or 200MPa was applied to specimen before impact test. Damage caused in those cases were compared with the case of without contact pressure. The damage of specimen was different depending upon the pressure level of confinement. The existence of confinement had suppressed the development of radial cracks from the bottom of specimen and reduced the extent of damage as compared with cases without contact pressure(p=0MPa). Because the application of contact pressure to the specimen increased the apparent flexural stiffness of specimen during bar impact, it had produced the change of developed damage in the specimen; from the radial cracks to the local contact stress dominant damage. It would contribute to the improvement of the ballistic property in ceramic plates.

  • PDF

계장화한 긴 바를 사용한 세라믹판의 충격 파괴 거동 (Impact Fracture Behavior of Ceramic Plates Using Instrumented Long Bar)

  • 신형섭;오상엽;최수용;서창민;장순남
    • 대한기계학회논문집A
    • /
    • 제26권4호
    • /
    • pp.787-793
    • /
    • 2002
  • In this study, a bar impact test of low velocity was carried out to gain an insight into the damage mechanism and sequence induced in alumina plates(AD 85 and AD 90) under impact conditions. An experimental setup utilizing an instrumented long bar impact was devised, that can measure directly the impact force applied to the specimen and supply a compressive contact pressure to the specimen. During the bar impact testing, the influences of the contact pressure applied along the impact direction to the specimen on the fracture behavior were investigated. The measured impact force profiles explained well the damage behavior induced in alumina plates. The higher contact pressure to the specimen led to the less damage due to the suppression of radial cracks due to the increase in the apparent flexural stiffness of plate. It had produced the change of damage pattern developed in the specimen; from the radial cracks to the local contact stress dominant damage. It would contribute to the improvement of the ballistic property in ceramic plates. The observed results showed the following sequence in damage developed: The development of cone crack at impact region, the formation of radial cracks from the rear surface of plate depending on the plate thickness, the occurrence of crushing within the cone envelope and the fragmentation.