DOI QR코드

DOI QR Code

Characterization of Dynamic Deformation Behavior of Al 7075-T6 at High Temperature by Using SHPB Technique

SHPB 기법을 사용한 고온에서의 Al 7075-T6 의 동적 변형 거동

  • Received : 2009.12.29
  • Accepted : 2010.06.24
  • Published : 2010.08.01

Abstract

The split Hopkinson pressure bar (SHPB) technique is extensively used to characterize material deformation behavior under high strain rate condition. In this study, the dynamic deformation behavior of aluminum 7075-T6 under a high strain rate and at a high temperature is investigated by using a modified SHPB set-up with the pulse shaper technique. The parameters used in the Johnson-Cook constitutive equation are determined by using the SHPB experimental results including the data on the effects of strain rate, temperature, strain hardening, and thermal softening of the material.

Split Hopkinson Pressure Bar(SHPB) 실험기법은 고변형률 하중 조건하에서 변형하는 여러 가지 공업 재료의 변형 거동 특성을 규명하는데 가장 널리 사용되는 실험 방법 중의 하나이다. 본 논문에서는 봉을 통하여 전파하는 응력파의 모양과 라이징 시간을 제어할 수 있는 pulse shaper를 사용하는 수정 SHPB 실험기법을 이용하였다. 수정 SHPB 실험 장치에 고온 장치를 부착하고 알루미늄 합금 7075-T6의 고변형률 하에서의 고온 변형거동에 대한 연구를 수행하였다. 고온 수정 SHPB 실험 장치를 이용하여 알루미늄 합금 7075-T6의 온도와 변형률속도에 따른 기계적 특성을 규명하고, 실험적으로 얻어진 데이터를 Johnson-Cook 구성방정식을 적용하여 알루미늄 합금 7075-T6의 동적 거동을 모델 하는 변수를 결정하였다.

Keywords

References

  1. Shin, H.-S., 1999, "Experimental Investigation of Ceramic Behavior Under Impact Loading - Effect of High Temperature-," Trans. of the KSME(A), Vol. 22, No. 5, pp. 921-928.
  2. Kolsky, H., 1963, "Stress In Sloids," Dover Publications Inc., New York, pp. 87-91.
  3. Meyers, M. A., 1994, "Dynamic Behavior of Materials," John Wiley & Sons.
  4. Lee, O. S., Hwang, S. W., Choi, H. B., Kim, H. M. and Kim, D. H., 2009, "Dynamic Deformation of Aluminum Alloys at High Temperature by Using SHPB Techniques," DYMAT2009, Vol. 1, pp. 443-448.
  5. Pochhammer, L., 1876, "On the Propagation Velocities of Small Oscillation in an Unlimited Isotropic Circular Cylinder," J. Reine Angewandte Math., Vol. 81, p. 324.
  6. Chree, C., 1889, "The Equation of an Isotropic Elastic Solid in Polar and Cylindrical Coordinates," Their Solutions and Application, Cambridge Phil. Soc. Trans., Vol. 14, p. 250.
  7. Gray, G. T., 2000, "ASM Handbook," Mechanical Testing and Evaluation, ASM International, Vol. 8, pp. 462-476.
  8. Lee, O. S., You, S. S., Chung, J. H. and Kang, H. S., 1998, "Dynamic Deformation Under a Modified Split Hopkinson Pressure Bar Experiment," KSME International Journal, Vol. 12, No. 6, pp. 1143-1149. https://doi.org/10.1007/BF02942588
  9. Lee, O. S., Kim, G. H. and Hwang, S. W., 2000, "Determination of Deformation Behavior of the Al 6061-T6 Under High Strain Rate Tensile Loading Using SHPB Technique," Trans. of the KSME(A), Vol. 24, No. 12, pp. 3033-3039.
  10. Yang, H. and Min, O.-K., 2000, "The True Stress-Strain Relation of Aluminum Alloys in the SHPB Tension Test," Trans. of the KSME(A), Vol. 24, No. 8, pp. 1917-1922.
  11. Cho, Y.-Y. and Kim, H.-S., 1993, "State Dependence of Activation Energies for High Temperature Creep of Al7075 Alloy," Trans. of the KSME, Vol. 17, No. 1, pp. 131-140.
  12. Lee, S.-M., Seo, S.-W., Park, K.-J. and Min, O.-K., 2003, "Temperature Dependence of Dynamic Behavior of Commercially Pure Titanium by the Compression Test," Trans. of the KSME(A), Vol. 27, No. 7, pp. 1152-1158. https://doi.org/10.3795/KSME-A.2003.27.7.1152

Cited by

  1. Design and Fabrication of Split Hopkinson Pressure Bar for Acquisition of Dynamic Material Property of Al6061-T6 vol.33, pp.7, 2016, https://doi.org/10.7736/KSPE.2016.33.7.587