DOI QR코드

DOI QR Code

Anti-Inflammatory Activity of Constituents Isolated from Ulmus davidiana var. japonica

  • Received : 2010.05.31
  • Accepted : 2010.07.15
  • Published : 2010.07.31

Abstract

Twenty six compounds (1-26) were isolated from the root barks of Ulmus davidiana var. japonica. The anti-inflammatory activity of the isolated compounds were evaluated agai nst the generation of inflammatory chemical mediators in bone marrow-derived mast cells. Among them, compounds 10, 11, 13, 15 and 19 inhibited not only cyclooxygenase-2 dependent prostaglandin $D_2$ generation but also 5-lipoxygenase dependent leukotrien $C_4$ generation in a concentration-dependent manner. In addition, compounds 11, 12, 13, 15 and 19 also inhibited $\beta$-hexosaminidase release, a marker of mast cell degranulation reaction, from bone marrow-derived mast cell. These results suggest that the anti-inflammatory activity of U. davidiana might in part occur by both the inhibition of eicosanoid generations and the degranulation reaction of mast cells.

Keywords

References

  1. Aguirre, M. C., Delporte, C., Backhouse, N., Erazo, S., Letelier, M. E., Cassels, B. K., Silva, X., Alegria, S. and Negrete, R. (2006). Topical anti-inflammatory activity of 2alpha-hydroxy pentacyclic triterpene acids from the leaves of Ugni molinae. Bioorg. Med. Chem. 14, 5673- 5677. https://doi.org/10.1016/j.bmc.2006.04.021
  2. Ali, M. S., Mahmud, S., Perveen, S., Ahmad, V. U. and Rizwani, G. H. (1999). Epimers from the leaves of Calophyllum inophyllum. Phytochemistry. 50, 1385-1389. https://doi.org/10.1016/S0031-9422(98)00480-4
  3. Boileau, C., Martel-Pelletier, J., Jouzeau, J. Y., Netter, P., Moldovan, F., Laufer, S., Tries, S. and Pelletier, J. P. (2002). Licofelone (ML-3000), a dual inhibitor of 5-lipoxygenase and cyclooxygenase, reduces the level of cartilage chondrocyte death in vivo in experimental dog osteoarthritis: inhibition of pro-apoptotic factors. J. Rheumatol. 29, 1446-1453.
  4. Boileau, C., Martel-Pelletier, J., Jouzeau, J. Y., Netter, P., Moldovan, F., Laufer, S., Tries, S. and Pelletier, J. P. (2002). Licofelone (ML-3000), a dual inhibitor of 5-lipoxygenase and cyclooxygenase, reduces the level of cartilage chondrocyte death in vivo in experimental dog osteoarthritis: inhibition of pro-apoptotic factors. J. Rheumatol. 29, 1446-1453.
  5. Foo, L. Y. and Karchesy, J. J. (1989). Polyphenolic glycosides from Douglas fir inner bark. Phytochemistry. 28, 1237-1240. https://doi.org/10.1016/0031-9422(89)80217-1
  6. Gulliksson, M., Palmberg, L., Nilsson, G., Ahlstedt, S. and Kumlin, M. (2006). Release of prostaglandin D2 and leukotriene C4 in response to hyperosmolar stimulation of mast cells. Allergy. 61, 1473-1479. https://doi.org/10.1111/j.1398-9995.2006.01213.x
  7. Hisashi, K. and Haruo, O. (1989). Configurational studies on hydroxy groups at C-2, 3 and 23 or 24 of oleanene and ursene-type triterpenes by NMR spectroscopy. Phytochemistry. 28, 1703-1710. https://doi.org/10.1016/S0031-9422(00)97829-4
  8. Inoshiri, S., Sasaki, M., Kohda, H., Otsuka, H. and Yamasaki, K. (1987). Aromatic glycosides from Berchemia racemosa. Phytochemistry. 26, 2811-2814. https://doi.org/10.1016/S0031-9422(00)83595-5
  9. Ishimaru, K., Nonaka, G. I. and Nishioka, I. (1987). Flavan-3-ol and procyanidin glycosides from Quercus miyagii. Phytochemistry. 26, 1167-1170. https://doi.org/10.1016/S0031-9422(00)82371-7
  10. Jin, M. H., Bae, K, H., Son, J. K. and Chang, H. W. (2009). Anti-inflammatory compounds from the leaves of Ailanthus altissima. Biomol. Therap. 17, 86-91. https://doi.org/10.4062/biomolther.2009.17.1.86
  11. Jin, U. H., Lee, D. Y., Kim, D. S., Lee, I. S. and Kim, C. H. (2006). Induction of mitochondria-mediated apoptosis by methanol fraction of Ulmus davidiana Planch (Ulmaceae) in U87 glioblastoma cells. Environ. Toxicol. Pharmaco. 22, 136-141. https://doi.org/10.1016/j.etap.2006.01.005
  12. Jin, U. H., Suh, S. J., Park, S. D., Kim, K. S., Kwon, D. Y. and Kim, C. H. (2008). Inhibition of mouse osteoblast proliferation and prostaglandin E2 synthesis by Ulmus davidiana Planch (Ulmaceae). Food Chem. Toxicol. 46, 2135-2142. https://doi.org/10.1016/j.fct.2008.02.011
  13. Jippo, T., Kobayashi, Y., Sato, H., Hattori, A., Takeuchi, H., Sugimoto, K. and Shigekawa, M. (2009). Inhibitory effects of guarana seed extract on passive cutaneous anaphylaxis and mast cell degranulation. Biosci. Biotechnol. Biochem. 73, 2110-2112. https://doi.org/10.1271/bbb.90205
  14. Jun, C. D., Pae, H. O., Kim, Y. C., Jeong, S. J., Yoo, J. C., Lee, E. J., Choi, B. M., Chae, S. W., Park, R. K. and Chung, H. T. (1998). Inhibition of nitric oxide synthesis by butanol fraction of the methanol extract of Ulmus davidiana in murine macrophages. J. Ethnopharmacol. 62, 129-135. https://doi.org/10.1016/S0378-8741(98)00063-4
  15. Kang, S. K., Kim, K. S., Byun, Y. S., Suh, S. J., Jin, U. H., Kim, K. H., Lee, I. S. and Kim, C. H. (2006). Effects of Ulmus davidiana Planch on mineralization, bone morphogenetic protein-2, alkaline phosphatase type I collagen, and collagenase-1 in bone cells. In Vitro Cell. Develop. Biol. Animal 42, 225-229. https://doi.org/10.1290/0510068.1
  16. Kim, H. J., Yeom, S. H., Kim, M. K., Shim, J. G., Lim, H. W. and Lee, M. W. (2004). Nitric oxide and prostaglandin E2 synthesis inhibitory activities of flavonoids from the barks of Ulmus macrocarpa. Nat. Prod. Sci. 10, 344-346.
  17. Kohler, N., Wray, V. and Winterhalter, P. (2008). Preparative isolation of procyanidins from grap seed extracts by highspeed counter-current chromatography. J. Chromato. A. 1177, 114-125. https://doi.org/10.1016/j.chroma.2007.11.028
  18. Lavaud, C., Massiot, G., Barrera, J. B., Moretti, C. and Le Men-Olivier, L. (1994). Triterpene saponins from Myrsine pellucida. Phytochemistry 37, 1671-1677. https://doi.org/10.1016/S0031-9422(00)89590-4
  19. Lee, M. K., Sung, S. H., Lee, H. S., Cho, J. H. and Kim, Y. C. (2001). Lignan and neolignan glycosides from Ulmus davidiana var. japonica. Arch. Pharm. Res. 24, 198-201. https://doi.org/10.1007/BF02978256
  20. Lee, S. H., Son, M. J., Ju, H, K., Lin, C, X., Moon, T. C., Choi, H. G., Son, J. K. and Chang, H. W. (2004). Dual inhibition of cyclooxygenases-2 and 5-lipoxygenase by deoxypodophyllotoxin (anthricin) in mouse bone marrow-derived mast cells. Biol. Pharm. Bull. 27, 786-788. https://doi.org/10.1248/bpb.27.786
  21. Li, S., Chen, R. Y. and Yu, D. Q. (2007). Study on chemical constituents of Myricaria paniculata I. Zhongguo Zhong Yao Za Zhi. 32, 403-406.
  22. Martel-Pelletier, J., Lajeunesse, D., Reboul, P., Pelletier, J. P. (2003) Therapeutic role of dual inhibitors of 5-LOX and COX, selective and non-selective non-steroidal anti-inflammatory drugs. Ann. Rheum. Dis. 62, 501-509. https://doi.org/10.1136/ard.62.6.501
  23. Metcalfe, D. D., Peavy, R. D. and Gilfillan, A. M. (2009) Mechanisms of mast cell signaling in anaphylaxis. J. Allergy Clin. Immunol. 124, 639-646. https://doi.org/10.1016/j.jaci.2009.08.035
  24. Mitchell, J. A. and Warner, T. D. (2006) COX isoforms in the cardiovascular system: understanding the activities of nonsteroidal anti-inflammatory drugs. Nat. Rev. Drug Discov. 5, 75-86. https://doi.org/10.1038/nrd1929
  25. Moon, T. C., Murakami, M., Kudo, I., Son, K. H., Kim, H. P. and Chang, H. W. (1999). A new class of COX-2 inhibitor, rutaecarpine from Evodia rutaecarpa. Inflamm. Res. 48, 621-625. https://doi.org/10.1007/s000110050512
  26. Moon, Y. H. and Rim, G. R. (1995). Studies on the constituents of Ulmus parvifolia. Korean J. Pharmacognosy. 26, 1-7.
  27. Murakami, M., Matsumoto, R., Austen, K. F. and Arm, J. P. (1994). Prostaglandin endoperoxide synthase-1 and -2 couple to different transmembrane stimuli to generate prostaglandin D2 in mouse bone marrow-derived mast cells. J. Biol. Chem. 269, 22269-22275.
  28. Na, M. K., An, R. B., Lee, S. M., Min, B. S., Kim, Y. H., Bae, K. H. and Kang, S. S. (2002). Antioxidant compounds from the stem bark of Sorbus commixta. Nat. Prod. Sci. 8, 26-29.
  29. Nahrstedt, A., Proksch, P. and Conn, E. E. (1987). (-)-Catechin, flavonol glycosides and flavones from Chamaebatia foliolosa. Phytochemistry. 26, 1546-1547. https://doi.org/10.1016/S0031-9422(00)81860-9
  30. Nawamaki, K. and Kuroyanagi, M. (1996). Sesquiterpenoids from Acorus calamus as germination inhibitors. Phytochemistry 43, 1175-1182. https://doi.org/10.1016/S0031-9422(96)00401-3
  31. Ono, E., Taniguchi, M., Mita, H., Fukutomi, Y., Higashi, N., Miyazaki, E., Kumamoto, T. and Akiyama, K. (2009) Increased production of cysteinyl leukotrienes and prostaglandin D2 during human anaphylaxis. Clin. Exp. Allergy 39, 72-80. https://doi.org/10.1111/j.1365-2222.2008.03104.x
  32. Pabst, A., Barron, D., Semon, E. and Schreier, P. (1992). Two diastereomeric 3-oxo-$\alpha$-ionol-$\beta$-glucosides from raspberry fruit. Phytochemistry 31, 1649-1652. https://doi.org/10.1016/0031-9422(92)83121-E
  33. Rotondo, S., Dell'Elba, G., Krauze-Brzósko, K., Manarini, S., Martelli, N., Pecce, R., Evangelista, V. and Cerletti, C. (2002). Licofelone, a dual lipoxygenase-cyclooxygenase inhibitor, downregulates polymorphonuclear leukocyte and platelet function. Eur. J. Pharmacol. 453, 131-139. https://doi.org/10.1016/S0014-2999(02)02385-3
  34. Rouzer, C. A. and Marnett, L. J. (2009) Cyclooxygenases: structural and functional insights. J. Lipid Res. 50, 29-34. https://doi.org/10.1194/jlr.R800042-JLR200
  35. Sang, S., Kikuzaki, H., Lapsley, K., Rosen, R. T., Nakatani, N. and Ho, C. T. (2002). Sphingolipid and other constituents from almond nuts (Prunus amygdalus Batsch). J. Agric. Food Chem. 50, 4709-4712. https://doi.org/10.1021/jf020262f
  36. Seebacher, W., Simic, N., Weis, R., Saf, R. and Kunert, O. (2003). Complete assignments of $^1H$ and $^{13}C$ NMR resonances of oleanolic acid, 18-oleanolic acid, ursolic acid and their 11-oxo derivatives. Magn. Res. Chem. 41, 636-638. https://doi.org/10.1002/mrc.1214
  37. Siddiqui, A. A., Wani, S. M., Rajesh, R. and Alagarsamy, V. (2006). Phytochemical and pharmacological investigation of Hibiscus rosasinensis Linn. Indian J. Pharm. Sci. 68, 588-593. https://doi.org/10.4103/0250-474X.29625
  38. Smite, E., Pan, H. and Lundgren, L. N. (1995). Lignan glycosides from inner bark of Betula pendula. Phytochemistry 40, 341-343. https://doi.org/10.1016/0031-9422(95)00057-E
  39. Son, J. K., Son, M. J., Lee, E. K., Moon, T. C., Son, K. H., Kim, C. H., Kim, H. P., Kang, S. S. and Chang, H. W. (2005). Ginkgetin, a biflavone from Ginko biloba leaves, inhibits cyclooxygenases-2 and 5-lipoxygenase in mouse bone marrow-derived mast cells. Biol. Pharm. Bull. 28, 2181-2184. https://doi.org/10.1248/bpb.28.2181
  40. Song, I. K., Kim, K. S., Suh, S. J., Kim, M. S., Kwon, D. Y., Kim, S. L. and Kim, C. H. (2007). Anti-inflammatory effect of Ulmus davidiana Planch on collagen-induced inflammation in rats. Environ. Toxicol. Pharmacol. 23, 102-110. https://doi.org/10.1016/j.etap.2006.07.013
  41. Suh, S. J., Yun, W. S., Kim, K. S., Jin, U. H., Kim, J. K., Kim, M. S., Kwon, D. Y. and Kim, C. H. (2007). Stimulative effect of Ulmus davidiana Planch (Ulmaceae) on osteoblastic MC3T3-E1 cells. J. Ethnopharmacol. 109, 480-485. https://doi.org/10.1016/j.jep.2006.08.030
  42. Theoharides, T. C., Kempuraj, D., Tagen, M., Conti, P. and Kalogeromitros, D. (2007) Differential release of mast cell mediators and the pathogenesis of inflammation. Immunol. Rev. 217, 65-78. https://doi.org/10.1111/j.1600-065X.2007.00519.x
  43. Umlauf, D., Zapp, J., Becker, H. and Adam, K. P. (2004). Biosynthesis of the irregular monoterpene artemisia ketone, the sesquiterpene germacrene D and other isoprenoids in Tanacetum vulgare L. (Asteraceae). Phytochemistry. 65, 2463-2470. https://doi.org/10.1016/j.phytochem.2004.08.019
  44. Wang, D., Xia, M. and Cui, Z. (2006). New triterpenoids isolated from the root bark of Ulmus pumila L. Chem. Pharm. Bull. 54, 775-778. https://doi.org/10.1248/cpb.54.775
  45. Yoshinari, K., Sashida, Y. and Shimomura, H. (1989). Two new lignan xylosides from the barks of Prunus ssiori and Prunus padus. Chem. Pharm. Bull. 37, 3301-3303. https://doi.org/10.1248/cpb.37.3301
  46. Yumiko, K., Toshihiro, A., Ken, Y., Michio, T. and Toshitake, T. (1995). Structures of five hydroxylated sterols from the seeds of Trichosanthes kirilowii Maxim. Chem. Pharm. Bull. 43, 1813-1817. https://doi.org/10.1248/cpb.43.1813
  47. Zhang, C. Z., Xu, X. Z. and Li, C. (1996). Fructosides from Cynomorium songaricum. Phytochemistry. 41, 975-976. https://doi.org/10.1016/0031-9422(95)00705-9

Cited by

  1. Lipoxygenase inhibitory activity of crude bark extracts and isolated compounds from Commiphora berryi vol.138, pp.1, 2011, https://doi.org/10.1016/j.jep.2011.09.007
  2. Immune-modulation Effect of Ulmus macrocarpa Hance Water Extract on Balb/c Mice vol.24, pp.10, 2014, https://doi.org/10.5352/JLS.2014.24.10.1151
  3. (−)-Catechin glycosides from Ulmus davidiana vol.37, pp.6, 2014, https://doi.org/10.1007/s12272-013-0264-6
  4. Contribution of oak lignans to wine taste: chemical identification, sensory characterization and quantification vol.71, pp.20, 2015, https://doi.org/10.1016/j.tet.2014.07.090
  5. Protective constituents against sepsis in mice from the root barks of Ulmus davidiana var. japonica vol.34, pp.9, 2011, https://doi.org/10.1007/s12272-011-0905-6
  6. Elm bark extract improves immunomodulation and ameliorates oxidative stress in irradiated mice vol.4, pp.1, 2017, https://doi.org/10.1016/j.jef.2017.01.001
  7. Maytenus macrocarpa (Ruiz & Pav.) Briq.: Phytochemistry and Pharmacological Activity vol.24, pp.12, 2010, https://doi.org/10.3390/molecules24122288
  8. Phenolic Profiling and Biological Potential of Ficus curtipes Corner Leaves and Stem Bark: 5-Lipoxygenase Inhibition and Interference with NO Levels in LPS-Stimulated RAW 264.7 Macrophages vol.9, pp.9, 2010, https://doi.org/10.3390/biom9090400
  9. Next Chapter in the Legend of Silphion: Preliminary Morphological, Chemical, Biological and Pharmacological Evaluations, Initial Conservation Studies, and Reassessment of the Regional Extinction Event vol.10, pp.1, 2021, https://doi.org/10.3390/plants10010102
  10. Anatomical and Chemical Characterization of Ulmus Species from South Korea vol.10, pp.12, 2010, https://doi.org/10.3390/plants10122617