DOI QR코드

DOI QR Code

RING ENDOMORPHISMS WITH THE REVERSIBLE CONDITION

  • 투고 : 2009.09.12
  • 발행 : 2010.07.31

초록

P. M. Cohn called a ring R reversible if whenever ab = 0, then ba = 0 for a, $b\;{\in}\;R$. Commutative rings and reduced rings are reversible. In this paper, we extend the reversible condition of a ring as follows: Let R be a ring and $\alpha$ an endomorphism of R, we say that R is right (resp., left) $\alpha$-shifting if whenever $a{\alpha}(b)\;=\;0$ (resp., $\alpha{a)b\;=\;0$) for a, $b\;{\in}\;R$, $b{\alpha}{a)\;=\;0$ (resp., $\alpha(b)a\;=\;0$); and the ring R is called $\alpha$-shifting if it is both left and right $\alpha$-shifting. We investigate characterizations of $\alpha$-shifting rings and their related properties, including the trivial extension, Jordan extension and Dorroh extension. In particular, it is shown that for an automorphism $\alpha$ of a ring R, R is right (resp., left) $\alpha$-shifting if and only if Q(R) is right (resp., left) $\bar{\alpha}$-shifting, whenever there exists the classical right quotient ring Q(R) of R.

키워드

참고문헌

  1. E. P. Armendariz, A note on extensions of Baer and P.P.-rings, J. Austral. Math. Soc. 18 (1974), 470–473. https://doi.org/10.1017/S1446788700029190
  2. D. D. Anderson and V. Camillo, Semigroups and rings whose zero products commute, Comm. Algebra 27 (1999), no. 6, 2847–2852. https://doi.org/10.1080/00927879908826596
  3. M. Ba¸ser, C. Y. Hong, and T. K. Kwak, On extended reversible rings, Algebra Colloq. 16 (2009), no. 1, 37–48. https://doi.org/10.1142/S1005386709000054
  4. M. Ba¸ser, T. K. Kwak, and Y. Lee, The McCoy condition on skew polynomial rings, Comm. Algebra 37 (2009), no. 11, 4026–4037. https://doi.org/10.1080/00927870802545661
  5. P. M. Cohn, Reversible rings, Bull. London Math. Soc. 31 (1999), no. 6, 641–648. https://doi.org/10.1112/S0024609399006116
  6. J. M. Habeb, A note on zero commutative and duo rings, Math. J. Okayama Univ. 32 (1990), 73–76.
  7. C. Y. Hong, N. K. Kim, and T. K. Kwak, Ore extensions of Baer and p.p.-rings, J. Pure Appl. Algebra 151 (2000), no. 3, 215–226. https://doi.org/10.1016/S0022-4049(99)00020-1
  8. C. Y. Hong, N. K. Kim, and T. K. Kwak, On skew Armendariz rings, Comm. Algebra 31 (2003), no. 1, 103–122. https://doi.org/10.1081/AGB-120016752
  9. C. Y. Hong, T. K. Kwak, and S. T. Rizvi, Extensions of generalized Armendariz rings, Algebra Colloq. 13 (2006), no. 2, 253–266. https://doi.org/10.1142/S100538670600023X
  10. D. A. Jordan, Bijective extensions of injective ring endomorphisms, J. London Math. Soc. (2) 25 (1982), no. 3, 435–448. https://doi.org/10.1112/jlms/s2-25.3.435
  11. N. K. Kim and Y. Lee, Armendariz rings and reduced rings, J. Algebra 223 (2000), no. 2, 477–488. https://doi.org/10.1006/jabr.1999.8017
  12. N. K. Kim and Y. Lee, Extensions of reversible rings, J. Pure Appl. Algebra 185 (2003), no. 1-3, 207–223. https://doi.org/10.1016/S0022-4049(03)00109-9
  13. J. Krempa, Some examples of reduced rings, Algebra Colloq. 3 (1996), no. 4, 289–300.
  14. J. Lambek, On the representation of modules by sheaves of factor modules, Canad. Math. Bull. 14 (1971), 359–368. https://doi.org/10.4153/CMB-1971-065-1
  15. T. K. Lee and Y. Q. Zhou, Armendariz and reduced rings, Comm. Algebra 32 (2004), no. 6, 2287–2299. https://doi.org/10.1081/AGB-120037221
  16. J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, John Wiley & Sons Ltd., 1987.
  17. L. Motais de Narbonne, Anneaux semi-commutatifs et uniseriels; anneaux dont les ideaux principaux sont idempotents, Proceedings of the 106th National Congress of Learned Societies (Perpignan, 1981), 71–73, Bib. Nat., Paris, 1982.
  18. A. R. Nasr-Isfahani and A. Moussavi, Ore extensions of skew Armendariz rings, Comm. Algebra 36 (2008), no. 2, 508–522. https://doi.org/10.1080/00927870701718849
  19. P. P. Nielsen, Semi-commutativity and the McCoy condition, J. Algebra 298 (2006), no. 1, 134–141. https://doi.org/10.1016/j.jalgebra.2005.10.008
  20. M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 1, 14–17. https://doi.org/10.3792/pjaa.73.14
  21. G. Y. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math. Soc. 184 (1973), 43–60. https://doi.org/10.1090/S0002-9947-1973-0338058-9