DOI QR코드

DOI QR Code

Characterization and Photonic Effect of Novel Ag-CNT/TiO2 Composites and their Bactericidal Activities

  • Zhang, Feng-Jun (School of Materials and Chemical Engineering, Anhui University of Architecture) ;
  • Oh, Won-Chun (Department of Advanced Materials & Science Engineering, Hanseo University)
  • Received : 2010.02.26
  • Accepted : 2010.05.23
  • Published : 2010.07.20

Abstract

A novel composite (Ag-CNT/$TiO_2$) of silver treated carbon nanotubes (Ag-CNT) and $TiO_2$ was synthesized via wet chemistry followed by a heat treatment. The dispersion and structure of the silver in the synthesized composites determined by X-ray diffraction (XRD), energy dispersive X-ray (EDX) spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy(TEM). XRD patterns of the composites showed that the composites contained a mixing anatase and rutile phase. The EDX spectra showed the presence of C, O, Ti and Ag peaks. The $TiO_2$ particles were distributed uniformly in the CNT network, and silver particles were virtually fixed on the surface of the tube. The photocatalysis degraded behaviors of the Ag-CNT/$TiO_2$ composites of the methylene blue, which increased with an increase of the silver component. The Ag-CNT/$TiO_2$ composites have excellent antibacterial activities against Escherichia coli (E. Coli), Pseudomonas aeruginosa (P. Aeru) and Bacillus subtilis (B. Sub) under visible light.

Keywords

References

  1. Lee, S. H.; Pumprueg, S.; Moudgil, B.; Sigmund, W. Colloid. Surf. B: Biointerfaces 2005, 40, 93. https://doi.org/10.1016/j.colsurfb.2004.05.005
  2. Sondi, I.; Sondi, B. S. J. Colloid. Interface Sci. 2004, 275, 177. https://doi.org/10.1016/j.jcis.2004.02.012
  3. Atrih, A.; Foster, S. J. Int. Dairy. J. 2002, 12, 217. https://doi.org/10.1016/S0958-6946(01)00157-1
  4. Fujishima, A.; Honda, K. Nature 1972, 238, 37. https://doi.org/10.1038/238037a0
  5. Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Chem. Rev. 1995, 95, 69. https://doi.org/10.1021/cr00033a004
  6. Linsebigler, A. L.; Lu, G.; Yates, J. T. Chem. Rev. 1995, 95, 735. https://doi.org/10.1021/cr00035a013
  7. Zhang, Y.; Franklin, N. W.; Chen, R. J.; Dai, H. J. Chem. Phys. Lett. 2000, 331, 35. https://doi.org/10.1016/S0009-2614(00)01162-3
  8. Fu, P. F.; Luan, Y.; Dai, X. G. J. Mol. Catal. A: Chem. 2004, 221, 81. https://doi.org/10.1016/j.molcata.2004.06.018
  9. Wang, W. D.; Serp, P.; Kalck, P.; Faria, J. L. J. Mol. Catal. A Chem. 2005, 235, 194. https://doi.org/10.1016/j.molcata.2005.02.027
  10. Chen, M. L.; Bae, J. S.; Oh, W. C. Bull. Korean Chem. Soc. 2006, 27, 1423. https://doi.org/10.5012/bkcs.2006.27.9.1423
  11. Chen, M. L.; Bae, J. S.; Oh,W. C. Carbon Sci. 2006, 7, 259.
  12. Ollis, D. F.; Alekabi, H. Photcatalytic Purification and Treatment of Water and Air; Elsevier: 1993; p 265.
  13. Jitianu, A.; Cacciaguerra, T.; Benoit, R.; Delpeux, S.; Beguin, F.; Bonnamy, S. Carbon 2004, 42, 1147. https://doi.org/10.1016/j.carbon.2003.12.041
  14. Phang, S. W.; Tadokoro, M.; Watanabe, J.; Kuramoto, N. Synth. Metal. 2008, 158, 251. https://doi.org/10.1016/j.synthmet.2008.01.012
  15. Ray, A. K. Chem. Eng. Sci. 1999, 54, 3113. https://doi.org/10.1016/S0009-2509(98)00507-7
  16. Oh, W. C.; Jung, A. R.; Ko, W. B. J. Ind. Eng. Chem. 2007, 13, 1208.
  17. Oh, W. C.; Chen, M. L. Bull. Korean Chem. Soc. 2008, 29, 159. https://doi.org/10.5012/bkcs.2008.29.1.159
  18. Wang, W. D.; Serp, P.; Kalck, P.; Faria, J. L. Appl. Catal. B: Environ. 2005, 56, 305. https://doi.org/10.1016/j.apcatb.2004.09.018
  19. Oh, W. C.; Jung, A. R.; Ko, W. B. Mater. Sci. Eng. C 2008, 29, 1338. https://doi.org/10.1016/j.msec.2008.10.034
  20. Zhang, F. J.; Chen, M. L.; Oh, W. C. Mater. Res. Soc. Korea 2008, 18, 583. https://doi.org/10.3740/MRSK.2008.18.11.583
  21. Yoon, K. Y.; Byeon, J. H.; Park, J. H.; Hwang, J. H. Sci. Total. Environ. 2007, 373, 572. https://doi.org/10.1016/j.scitotenv.2006.11.007
  22. Oh, W. C. J. Ind. Eng. Chem. 2003, 9, 117. https://doi.org/10.1021/ie50086a900
  23. Oh, W. C. Bull. Korean Chem. Soc. 2004, 25, 639. https://doi.org/10.5012/bkcs.2004.25.5.639
  24. Liu, T.; Tang, H. Q.; Cai, X. M.; Zhao, J.; Li, D. J.; Li, R.; Sun, X. L. Nucl. Inst. Meth. Phys. Res. B 2007, 264, 282. https://doi.org/10.1016/j.nimb.2007.08.095
  25. Zhang, S. T.; Fu, R. W.; Wu, D. C.; Xu, W.; Ye, Q. W.; Chen, Z. L. Carbon 2004, 42, 3209. https://doi.org/10.1016/j.carbon.2004.08.004
  26. Park, S. J.; Jang, Y. S. J. Colloid. Interface. Sci. 2003, 261, 238. https://doi.org/10.1016/S0021-9797(03)00083-3
  27. Zhao, J.; Feng, H. J.; Tang, H. Q.; Zheng, J. H. Nncl. Instr. Meth. B 2006, 243, 299. https://doi.org/10.1016/j.nimb.2005.08.189
  28. Berman, E. Toxic Metals and Their Analysis; Heyden and Son: London, 1980; p 116.
  29. Inagaki, M.; Hirose,Y.; Matsunaga,T.; Tsumura,T.; Toyoda, M. Carbon 2003, 41, 2619. https://doi.org/10.1016/S0008-6223(03)00340-3
  30. Oh, W. C.; Chen, M. L. J. Ceram. Process. Res. 2008, 9, 100.
  31. Powder Diffraction File, Joint Committee on Powder Diffraction Standards International Center for Diffraction Data, Swarthmore, PA, 1987, Card 04-0783.
  32. Christensen, P. A.; Curtis, T. P.; Egerton, T. A.; Kosa, S. A. M.; Tinlin, J. R. Appl. Catal. B: Environ. 2003, 41, 371. https://doi.org/10.1016/S0926-3373(02)00172-8
  33. Ajayan, P. M.; Iijima, S. Nature 1996, 361, 333. https://doi.org/10.1038/361333a0
  34. Ugarte, U.; Chatelain, A.; De Heer, W. A. Science 1996, 274, 1897. https://doi.org/10.1126/science.274.5294.1897
  35. Sunkara, B. K.; Misra, R. D. K. Acta Biomaterialia 2008, 4, 273. https://doi.org/10.1016/j.actbio.2007.07.002
  36. Rana, S.; Rawat, J.; Sorensson, M. M. Acta Biomaterialia 2006, 2, 421. https://doi.org/10.1016/j.actbio.2006.03.005

Cited by

  1. Photoinactivation of bacteria by using Fe-doped TiO2-MWCNTs nanocomposites vol.27, pp.12, 2016, https://doi.org/10.1007/s10856-016-5788-0