DOI QR코드

DOI QR Code

Preconcentration and Determination of Fe(III) from Water and Food Samples by Newly Synthesized Chelating Reagent Impregnated Amberlite XAD-16 Resin

  • Tokahoglu, Serife (Erciyes University, Faculty of Arts and Sciences, Chemistry Department) ;
  • Ergun, Hasan (Erciyes University, Faculty of Arts and Sciences, Chemistry Department) ;
  • Cukurovah, Alaaddin (Firat University, Faculty of Arts and Sciences, Chemistry Department)
  • Received : 2010.01.29
  • Accepted : 2010.05.19
  • Published : 2010.07.20

Abstract

A simple and reliable method has been developed to selectively separate and concentrate trace amounts of Fe(III) ions from water and food samples by using flame atomic absorption spectrometry. A new reagent, 5-hydroxy-4-ethyl-5,6-di-pyridin-2-yl-4,5-dihydro-2H-[1,2,4] triazine-3-thione, was synthesized and characterized by using FT-IR spectroscopy and elemental analysis. Effects of pH, concentration and volume of elution solution, sample flow rate, sample volume and interfering ions on the recovery of Fe(III) were investigated. The optimum pH was found to be 5. Eluent for quantitative elution was 10 mL of 2 M HCl. The preconcentration factor of the method, detection limit (3s/b, ${\mu}gL^{-1}$) and relative standard deviation values were found to be 25, 4.59 and 1%, respectively. In order to verify the accuracy of the method, two certified reference materials (TMDA 54.4 lake water and SRM 1568a rice flour) were analyzed. The results obtained were in good agreement with the certified values. The method was successfully applied to the determination of Fe(III) ions in water and food samples.

Keywords

References

  1. Zhu, X.; Chang, X.; Cui, Y.; Zou, X.; Yang, D.; Hu, Z. Microchem. J. 2007, 86, 189. https://doi.org/10.1016/j.microc.2007.03.002
  2. Xiong, C.; Jiang, Z.; Hu, B. Anal. Chim. Acta 2006, 559, 113. https://doi.org/10.1016/j.aca.2005.11.051
  3. Yaman, M.; Kaya, G. Anal. Chim. Acta 2005, 540, 77. https://doi.org/10.1016/j.aca.2004.08.018
  4. Tokalıoglu, S.; Livkebabcı, A. Microchim. Acta 2009, 164, 471.
  5. Hazer, O.; Kartal, S.; Tokalıoglu, S. J. Anal. Chem. 2009, 64, 609. https://doi.org/10.1134/S1061934809060124
  6. Rofouei, M. K.; Payehghadr, M.; Shamsipur, M.; Ahmadalinezhad, A. J. Hazard. Mater. 2009, 168, 1184. https://doi.org/10.1016/j.jhazmat.2009.02.165
  7. Tokalıoglu, S.; Kartal, S. Bull. Korean Chem. Soc. 2006, 271, 293.
  8. Singh, B. N.; Maiti, B. Talanta 2006, 69, 393. https://doi.org/10.1016/j.talanta.2005.06.072
  9. Ayata, S.; Kaynak, İ.; Merdivan, M. Environ. Monit. Assess. 2009, 153, 333. https://doi.org/10.1007/s10661-008-0359-6
  10. Hosseini, M. S.; Bandegharaei, A. H.; Raisi, H.; Belador, F. J. Hazard. Mater. 2009, 169, 52. https://doi.org/10.1016/j.jhazmat.2009.03.058
  11. Matsumiya, H.; Yasuno, S.; Iki, N.; Miyano, S. J. Chromatogr. A 2005, 1090, 197. https://doi.org/10.1016/j.chroma.2005.06.086
  12. Ramesh, A.; Mohan, K. R.; Seshaiah, K. Talanta 2002, 57, 243. https://doi.org/10.1016/S0039-9140(02)00033-4
  13. Sharma, R. K.; Pant, P. J. Hazard. Mater. 2009, 163, 295. https://doi.org/10.1016/j.jhazmat.2008.06.120
  14. http://www.sigmaaldrich.com
  15. Tewari, P. K.; Singh, A. K. Analyst 1999, 124, 1847. https://doi.org/10.1039/a906479f
  16. Ramesh, A.; Devi, B. A.; Hasegawa, H.; Maki, T.; Ueda, K. Microchem. J. 2007, 86, 124. https://doi.org/10.1016/j.microc.2007.01.002
  17. Bagheri, H.; Gholami, A.; Najafi, A. Anal. Chim. Acta 2000, 424, 233. https://doi.org/10.1016/S0003-2670(00)01151-X
  18. Cui, Y.;Chang, X.; Zhu, X.; Jiang, N.; Hu, Z.; Lian, N. Microchem. J. 2007, 86, 23. https://doi.org/10.1016/j.microc.2006.09.002
  19. Hosseini, M. S.; Raisi, H.; Madarshahian, S. React. Funct. Polym. 2006, 66, 1539. https://doi.org/10.1016/j.reactfunctpolym.2006.05.003
  20. Mahmoud, M. E.; Al Sadi, M. S. M. Anal. Chim. Acta 2001, 450, 239. https://doi.org/10.1016/S0003-2670(01)01389-7
  21. Zhu, X.; Yang, D.; Chang, X.; Cui, Y.; Hu, Z.; Zou. X. Microchim. Acta 2008, 161, 115. https://doi.org/10.1007/s00604-007-0790-3
  22. Cukurovalı, A. Synthetic Commun. 2009, 39, 4396. https://doi.org/10.1080/00397910902906537
  23. Oymak, T.; Tokalioglu, S.; Yılmaz, V.; Kartal, S.; Aydın, D. Food Chem. 2009, 113, 1314. https://doi.org/10.1016/j.foodchem.2008.08.064
  24. Shamspur, T.; Sheikhshoaie, I.; Mashhadizadeh, M. H. J. Anal. At. Spectrom. 2005, 20, 476. https://doi.org/10.1039/b416097e
  25. Tewari, P. K.; Singh, A. K. Fresenius J. Anal. Chem. 2000, 367, 562. https://doi.org/10.1007/s002160000395
  26. Pourreza, N.; Hoveizavi, R. Anal. Chim. Acta 2005, 549, 124. https://doi.org/10.1016/j.aca.2005.06.037
  27. Pourreza, N.; Mousavi, H. Z. Talanta 2004, 64, 264. https://doi.org/10.1016/j.talanta.2004.02.006

Cited by

  1. Advanced and Hyphenated Techniques for Nano-Level Analysis of Iron in Water vol.42, pp.3, 2012, https://doi.org/10.1080/10408347.2012.677720
  2. Simple Time-Saving Method for Iron Determination Based on Fluorescence Quenching of an Azaflavanon-3-ol Compound vol.63, pp.10, 2015, https://doi.org/10.1021/jf505336d
  3. A Simple Spectrofluorimetric Method Based on Quenching of a Nickel(II)-Phthalocyanine Complex to Determine Iron (III) vol.26, pp.4, 2016, https://doi.org/10.1007/s10895-016-1829-9
  4. recognition in water environment vol.8, pp.29, 2016, https://doi.org/10.1039/C6AY01502F
  5. Synthesis of Microwave-Assisted Fluorescence Carbon Quantum Dots Using Roasted-Chickpeas and its Applications for Sensitive and Selective Detection of Fe3+ Ions vol.30, pp.3, 2020, https://doi.org/10.1007/s10895-019-02428-7