DOI QR코드

DOI QR Code

Fast Microchip Electrophoresis Using Field Strength Gradients for Single Nucleotide Polymorphism Identification of Cattle Breeds

  • Oh, Doo-Ri (Department of Chemistry and Research Institute of Physics and Chemistry (RINPAC), Chonbuk National University) ;
  • Cheong, Il-Cheong (Hankyong National University) ;
  • Lee, Hee-Gu (Medical Genomic Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Eo, Seong-Kug (Department of Microbiology, College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University) ;
  • Kang, Seong-Ho (Department of Chemistry and Research Institute of Physics and Chemistry (RINPAC), Chonbuk National University)
  • Received : 2010.01.12
  • Accepted : 2010.05.05
  • Published : 2010.07.20

Abstract

A microchip electrophoresis (ME) method was developed using a programmed field strength gradients (PFSG) for the single nucleotide polymorphism (SNP) based fast identification of cattle breeds. Four different Korean cattle (Hanwoo) and Holstein SNP markers amplified by allele-specific polymerase chain reaction were separated in a glass microchip filled with 0.5% poly(ethyleneoxide) ($M_r$ = 8 000 000) by PFSG as follows: 750 V/cm for 0 - 14 s, 166.7 V/cm for 14 - 31 s, 83.3 V/cm for 31 - 46 s, and 750 V/cm for 46 - 100 s. The cattle breeds were clearly distinguished within 45 s. The ME-PFSG method was 7 times and 5 times faster than the constant electric field ME method and the capillary electrophoresis- PFSG method, respectively, with a high resolving power ($R_s$ = 5.05 - 9.98). The proposed methodology could be a powerful tool for the fast and simultaneous determination of SNP markers for various cattle breeds with high accuracy.

Keywords

References

  1. Gielbert, A.; Davis, L. A.; Sayers, A. R.; Hope, J.; Gill, A. C.; Sauer, M. J. J. Mass. Spectrom. 2000, 33, 384.
  2. Do, K. T.; Shin, H. Y.; Lee, J. H.; Kim, N. S.; Park, E. W.; Yoon, D. H.; Kim, K. S. J. Anim. Sci. & Technol. 2007, 49, 711. https://doi.org/10.5187/JAST.2007.49.6.711
  3. Kim, D.-K.; Kang, S. H. J. Chromatogr. A 2005, 1064, 121. https://doi.org/10.1016/j.chroma.2004.12.045
  4. Lee, M.; Yoon, D.; Jeon, J.-T.; Eo, S. K.; Kang, S. H. Bull. Korean Chem. Soc. 2009, 30, 2655. https://doi.org/10.5012/bkcs.2009.30.11.2655
  5. Jeon, S.; Eo, S. K.; Kim, Y.; Yoo, D. J.; Kang, S. H. Talanta 2007, 73, 415. https://doi.org/10.1016/j.talanta.2007.04.002
  6. Heller, C. Electrophoresis 2000, 21, 593. https://doi.org/10.1002/(SICI)1522-2683(20000201)21:3<593::AID-ELPS593>3.0.CO;2-U
  7. Luckey, J. A.; Smith, L. M. Anal. Chem. 1993, 65, 2841. https://doi.org/10.1021/ac00068a022
  8. Guttman, A.; Cooke, N. J. Chromatogr. 1991, 559, 285. https://doi.org/10.1016/0021-9673(91)80078-U
  9. Baker, D. R. Capillary Electrophoresis; John Wiley & Sons: New York, 1995; pp 31-52.
  10. Guttman, A.; Wanders, B.; Cooke, N. Anal. Chem. 1992, 64, 2348. https://doi.org/10.1021/ac00044a009
  11. Guttman, A.; Cooke, N. Anal. Chem. 1991, 63, 2038. https://doi.org/10.1021/ac00018a027
  12. Karger, B. L.; Cohen, A. S.; Guttman, A. J. Chromotogr. 1989, 492, 585. https://doi.org/10.1016/S0378-4347(00)84480-1
  13. Demana, T.; Lanan, M.; Morris, M. D. Anal. Chem. 1991, 63, 2795. https://doi.org/10.1021/ac00023a023
  14. Yoshida, C.; Endo, Y.; Baba, Y. Eur. J. Pharm. Sci. 2001, 13, 99. https://doi.org/10.1016/S0928-0987(00)00213-X
  15. Inoue, H.; Tsuhako, M.; Baba, Y. J. Chromatogr. A 1998, 802, 179. https://doi.org/10.1016/S0021-9673(97)01098-4
  16. Go, H.; Lee, M.; Oh, D.; Kim, K.-S.; Cho, K.; Yoo, D. J.; Kang, S. H. Bull. Korean Chem. Soc. 2009, 30, 2141. https://doi.org/10.5012/bkcs.2009.30.9.2141
  17. Tang, G.; Yan, D.; Yang, C.; Gong, H.; Chai, J. C.; Lam, Y. C. Electrophoresis 2006, 27, 628. https://doi.org/10.1002/elps.200500681
  18. Evenhuis, C. J.; Haddad, P. R. Electrophoresis 2009, 30, 897. https://doi.org/10.1002/elps.200800643
  19. Negrini, R.; Nicoloso, L.; Crepaldi, P.; Milanesi, E.; Colli, L.; Chegdani, F.; Pariset, L. et al. Anim. Genet. 2009, 40, 18. https://doi.org/10.1111/j.1365-2052.2008.01800.x

Cited by

  1. Theoretical investigation on the performance of DNA electrophoresis under programmed step electric field strength: Two-step condition vol.38, pp.20, 2015, https://doi.org/10.1002/jssc.201500640
  2. Voltage-programming-based capillary gel electrophoresis for the fast detection of angiotensin-converting enzyme insertion/deletion polymorphism with high sensitivity vol.39, pp.16, 2016, https://doi.org/10.1002/jssc.201600439
  3. Food analysis on microchip electrophoresis: An updated review vol.33, pp.15, 2010, https://doi.org/10.1002/elps.201200049