DOI QR코드

DOI QR Code

AFM 캔틸레버를 이용한 i-motif DNA의 구조 변화에 미치는 화학적 환경에 대한 연구

Study on the chemical environment for conformational change of i-motif DNA by atomic force microscopy cantilever

  • Jung, Hwi-Hun (Department of Biomedical Engineering, Yonsei University) ;
  • Park, Jin-Sung (Department of Mechanical Engineering, Korea University) ;
  • Yang, Jae-Moon (Department of Radiology, College of Medicine, Yonsei University) ;
  • Lee, Sang-Woo (Department of Biomedical Engineering, Yonsei University) ;
  • Eom, Kil-Ho (Department of Mechanical Engineering, Korea University) ;
  • Kwon, Tae-Yun (Department of Biomedical Engineering, Yonsei University) ;
  • Yoon, Dae-Sung (Department of Biomedical Engineering, Yonsei University)
  • 투고 : 2010.03.17
  • 심사 : 2010.04.26
  • 발행 : 2010.05.31

초록

Three-dimensional(3D) structure of specific DNA can be changed between two conformations under an external environmental transition such as pH and salt concentration variations. We have experimentally observed the conformational transitions of i-motif DNA using AFM cantilever bioassay. It is shown that pH change of a solvent induces the bending defleciton change of a cantilever functionalized by i-motif DNA. This indicates that cantilever bioassay enables the label-free detection of DNA structural changes upon pH change. It is implied that cantilever bioassay can be a de novo route to quantitatively understand the conformational transitions of biological molecules under environmental changes.

키워드

참고문헌

  1. N. C. Seeman, “DNA in a material world”, Nature, vol. 421, pp. 427-431, 2003. https://doi.org/10.1038/nature01406
  2. N. C. Seeman, “Nucleic acid junctions and lattices”, J. Theor. Biol., vol. 99, pp. 237-247, 1982. https://doi.org/10.1016/0022-5193(82)90002-9
  3. N. C. Seeman and N. R. Kallenbach, “DNA branched junctions”, Annu. Rev. Biophys. Biomol. Struct., vol. 23, pp. 53-86, 1994. https://doi.org/10.1146/annurev.bb.23.060194.000413
  4. N. C. Seeman, “Nucleic acid nanostructures and topology”, Angew. Chem. Int. Ed., vol. 37, pp. 3220-3238, 1998. https://doi.org/10.1002/(SICI)1521-3773(19981217)37:23<3220::AID-ANIE3220>3.0.CO;2-C
  5. N. C. Seeman, “DNA nicks and nodes and nanotechnology”, Nano Letter, vol. 1, pp. 22-26, 2001. https://doi.org/10.1021/nl000182v
  6. N. C. Seeman, “At the crossroads of chemistry, biology and materials : Structural DNA nanotechnology”, Chem. Biol., vol. 10, pp. 1151-1159, 2003. https://doi.org/10.1016/j.chembiol.2003.12.002
  7. E. Winfree, F. R. Liu, L. A. Wenzler, and N. C, Seeman, “Design and self-assembly of two-dimensional DNA crystals”, Nature, vol. 394, pp. 539-544, 1998, https://doi.org/10.1038/28998
  8. C. D. Mao, W. Sun, and N. C. Seeman, “Designed two-dimensional DNA holliday junctio arrays visualized by atomic force microscopy”, J. Am. Chem. Soc., vol. 121, pp. 5437-5443, 1999. https://doi.org/10.1021/ja9900398
  9. H. Yan, S. H. Park, G. Finkelstein, J. H. Reif, and T. H. Labean, “DNA-templated self-assembly of protein arrays and highly conductive nanowires”, Science, vol. 301, pp. 1882-1884, 2003. https://doi.org/10.1126/science.1089389
  10. P. W. K. Rothemund, “Folding DNA to create nanoscale shapes and patterns”, Nature, vol. 440, pp. 297-302, 2006. https://doi.org/10.1038/nature04586
  11. Y. G. Ke, S. Lindsay, Y. Chang, Y. Liu, and H. Yan, “Self-assambled water-soluble nucleic acid probe tiles for label-free RNA hybridization assay”, Science, vol. 319, pp. 180-183, 2008. https://doi.org/10.1126/science.1150082
  12. K. V. Gothelf and T. H. LaBean, “DNA- programmed assembly of nanostructures”, Org. Biomol. Chem. vol. 3, pp. 4023-4037, 2005. https://doi.org/10.1039/b510551j
  13. J. H. Chen and N. C. Seeman, “The synthesis from DNA of a molecule with the connectivity of a cube”, Nature, vol. 350, pp. 631-633, 1991. https://doi.org/10.1038/350631a0
  14. Y. W. Zhang and N. C. Seeman, “The construction of a DNA truncated octahedron”, J. Am. Chem. Soc., vol. 116, pp. 1661-1669, 1994. https://doi.org/10.1021/ja00084a006
  15. R. P. Goodman, I. A. T. Schaap, C. F. Tardin, C. M. Erben, M. R. Berry, C. F. Schmidt, and A. J. Turberfield, “Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication”, Science, vol. 310, pp. 1661-1665, 2005. https://doi.org/10.1126/science.1120367
  16. W. M. Shih, J. D. Quispe, and G. F. Joyce, “A 1.7-kKilobase single-stranded DNA that folds into a nanoscale octahedron”, Nature, vol. 427, pp. 618-621, 2004. https://doi.org/10.1038/nature02307
  17. L. Lacroix, J. Mergny, J. Leroy, and C. Helene, “Inability of RNA to form the i-Motif : Implications for triplex formation”, Biochemistry, vol. 35, pp. 8715-8722, 1996. https://doi.org/10.1021/bi960107s
  18. J. Mergny “Fluorescence energy transfer as a probe for tetraplex formation : The i-motif”, Biochemistry, vol. 38, pp. 1573-1581, 1999. https://doi.org/10.1021/bi982208r
  19. D. Miyoshi, S. Matsumura, W. Li, and N. Sugimoto, “Structural polymorphism of telomeric DNA regulated by pH and divalent cation”, Nucleosides & Nucleic acid, vol. 22, pp. 203-221, 2009.
  20. S. Modi, Swetha M. G., D. Goswami, G. D. Gupta, S. Mayor, and Y. Krisnan, “A DNA nanomachine that maps spatial and temporal pH changes inside living cells”, Nature Nanotechnology, vol. 4, pp. 325-330, 2009. https://doi.org/10.1038/nnano.2009.83
  21. H. Liu, Y. Xu, F. Li, Y. Yang, W. Wang, Y. Song, and D. Liu, “Light-driven conformational switch of i-motif DNA”, Angew. Chem., Int. Ed., vol. 46, pp. 2515-2517, 2007. https://doi.org/10.1002/anie.200604589
  22. W. Shu, D. Liu, M. Watari, C. K. Riener, T. Strunz, M. E. Welland, S. Balasubramanian, and R. A. McKendry, “DNA molecular motor driven micromechanical cantilever arrays”, J. Am. Chem. Soc., vol. 127, pp. 17054-17060, 2005. https://doi.org/10.1021/ja0554514
  23. K. S. Jin, S. R. Shin, B. Ahn, Y. Rho, S. J. Kim, and M. Ree, “pH-dependent structures of an i-motif DNA in solution”, J. Phys. Chem. B, vol. 113, pp. 1852-1856, 2009. https://doi.org/10.1021/jp808186z
  24. J. W. Park, O. Ducloux, S. Nishida, and H. Fujita, “Continuous monitoring of insulin attachment kinetics on photothermally actuated microcantilever biosensor”, The 15th International Conference on Solid-State Sensors, Actuators and Microsystems, pp. 437-440, Danver, USA, 2009.
  25. N. I. Abu-Lail, M. Kaholek, B. LaMattina, R. L. Clark, and S. Zauscher, “Micro-cantilevers with end-grafted stimulus-responsive polymer brushes for actuation and sensing”, Sensors and Actuators B, vol. 114, pp. 371-378, 2006. https://doi.org/10.1016/j.snb.2005.06.003
  26. 현석정, 김현석, 김용준, 정효일, “고감도 압저항 외팔보 센서를 이용한 Liposome의 검침”, 센서학회지, 제14권, 제3호, pp. 156-159, 2005. https://doi.org/10.5369/JSST.2005.14.3.156
  27. 박지은, 김동선, 최호진, 신장규, 김판겸, 임근배, “AFM을 이용한 스트렙타비딘-바이오틴 단백질 복합체의 흡착 분석”, 센서학회지, 제15권, 제4호, pp. 237-244, 2006. https://doi.org/10.5369/JSST.2006.15.4.237