DOI QR코드

DOI QR Code

Single crystal growth of ZnWO4 by the Czochralski method and characterization

Czochralski법에 의한 ZnWO4 단결정 성장 및 특성분석

  • Lim, Chang-Sung (Dept. of Advanced Materials Science & Engineering, Hanseo University)
  • Received : 2010.03.15
  • Accepted : 2010.03.29
  • Published : 2010.04.25

Abstract

Single crystals of $ZnWO_4$ with [100], [010] and [001] directions were successfully grown by the Czochralski method. The seed crystals for the single crystal growth of $ZnWO_4$ could be induced by the crystal growth using platinum wires applied by the capillary action from the melt. The growth conditions in each direction were investigated in terms of the variations of rotation speed, pulling rate and diameter of the grown crystals. The formation of cracking in the grown crystals during the cooling process could be prevented by annealing effect. The growth directions of the grown crystals were determined using Laue back reflection. The microscopic characteristics of the grown crystals in each direction were discussed, and their physical properties were evaluated for hardness, thermal expansion coefficients and dielectric constants.

Czochralski법에 의한 $ZnWO_4$ 단결정을 [100], [010], [001] 방향으로 성공적으로 성장시켰다. $ZnWO_4$ 단결정 성장을 위한 종자결정은 백금 침을 사용하여 용융액으로부터 모세관 현상을 응용한 결정성장으로 얻을 수 있었다. 각 축 방향에 따른 성장조건이 rotation speed, pulling rate, 성장된 결정의 직경등의 변수를 가지고 조사되어졌다. 성장된 결정의 냉각시 발생되는 균열을 annealing 효과에 의하여 방지할 수 있었다. 성장된 결정의 방위는 Laue back reflection으로 결정하였다. 각 축 방향으로 성장된 결정의 미세구조적 특징이 논하여졌으며, 경도, 열팽창계수 및 유전상수의 물리적 특성이 평가되어졌다.

Keywords

References

  1. F. Yang and C. Tu, Materials Letters, 61, 3056-3058 (2007). https://doi.org/10.1016/j.matlet.2006.10.074
  2. I. Foeldvari, A. Peter, S. Keszthelyi-Landori, R. Capelletti, I. Cravero and F. Schmidt, J. Crystal Growth, 79, 714-719(1986). https://doi.org/10.1016/0022-0248(86)90543-9
  3. P. F. Schofield, K. S. Knight and G. Cressey, J. Mat. Sci., 31, 2873-2877(1996). https://doi.org/10.1007/BF00355995
  4. M Nikl, K. Blazek, G. P. Pazzi, A. Vedda, M. Martini, M. Kobayashi, K. Shimamura and T. Fukuda, J. Mat. Sci., 35, 4879-4883(2000). https://doi.org/10.1023/A:1004809804206
  5. S. O'Hara and G. M. Mcmanus, J. Appl. Phys., 36, 1741-1746(1965) . https://doi.org/10.1063/1.1703120
  6. A. Kornylo, A. Jankowska-Frydel, B. Kuklinski, M. Grinberg, N. Kruyiak, Z. Moroz and M. Pashkowsky, Radiation Measurement, 38, 707-716(2004). https://doi.org/10.1016/j.radmeas.2004.03.003
  7. X. Jiang, J. Ma, J. Liu, Y. Ren, B. Lim, J. Tao and X. Zhu, Materials Letters, 61, 4595-4598(2007). https://doi.org/10.1016/j.matlet.2007.02.058
  8. V. Nagirnyi, L. Jonsson, M. Kirm, A. Kotlov,, A. Lushchik, I. Martinson, A. Watterich, B. I. Zadneprovski, Radiation Measurement, 38, 519-522(2004). https://doi.org/10.1016/j.radmeas.2004.01.024
  9. R. O. Keeling, Acta Cryst., 10, 209-213(1957). https://doi.org/10.1107/S0365110X57000651
  10. W. G. Nilsen and S. K. Kurz, Phys. Review, 136, A262-266(1964) . https://doi.org/10.1103/PhysRev.136.A262
  11. L. Malicsko, A. Peter and W. Erfurth, J. Crystal Growth, 151, 127-133(1995). https://doi.org/10.1016/0022-0248(95)00015-1
  12. A. Watterich, A. Hofstaetter, R. Wuerz, A. Scharmann and O.R.Gilliam, J. Phys.: Condens. Matter, 10, 205-213(1998). https://doi.org/10.1088/0953-8984/10/1/023
  13. A. Watterich, G. J. Edwards, O. R. Gilliam and L. A. Kappers, J. Phys.: Condens. Matter, 8, 10659-10667 (1996). https://doi.org/10.1088/0953-8984/8/49/050
  14. M. Bonanni, L. Spanhel, M. lerch, E. Fueglein and G. Mueller, Chem. Mater., 10, 304-310(1998). https://doi.org/10.1021/cm9704591