Phytoene Desaturase에 대한 O-(2-Phenoxy)ethyl-N-aralkylcarbamates 유도체의 제초성 평가를 위한 R-phenoxy 치환기들의 구조적인 요건

Minimum Structural Requirements of R-phenoxy Substituents for Herbicidal Evaluation of O-(2-phenoxy)ethyl-N-aralkylcarbamate Analogues against Phytoene Desaturase

  • 최원석 (충남대학교 농업생명과학대학 응용생물화학과) ;
  • 이재황 (충남대학교 농업생명과학대학 응용생물화학과) ;
  • 황승우 (충남대학교 농업생명과학대학 응용생물화학과) ;
  • 성낙도 (충남대학교 농업생명과학대학 응용생물화학과)
  • Choi, Won-Seok (Department of Applied Biology & Chemistry, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Lee, Jae-Whang (Department of Applied Biology & Chemistry, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Hwang, Seung-Woo (Department of Applied Biology & Chemistry, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Sung, Nack-Do (Department of Applied Biology & Chemistry, College of Agriculture and Life Sciences, Chungnam National University)
  • 투고 : 2010.02.16
  • 심사 : 2010.03.02
  • 발행 : 2010.03.31

초록

3차원적 정량적인 구조-활성관계(3D-QSARs: CoMFA 및 CoMSIA)에 기초하여 phytoene desaturase (PDS)에 대한 O-(2-phenoxy)ethyl-N-aralkylcarbamate 유도체(1-15)의 제초성 평가를 위한 R-phenoxy 치환기들의 구조적인 요건들을 정량적으로 검토하였다. CoMFA 1 모델의 예측성 및 상관성($r^2_{cv.}=0.753$$r^2_{ncv.}=0.964$)이 나머지 모델들보다 높았다. 최적화된 CoMFA 1 모델로부터 PDS 저해활성은 O-(2-phenoxy)ethyl-N-aralkylcarbamate 유도체들의 입체장(44.0%), 정전기장(36.3%) 및 소수성장(19.6%)에 의존적이었다. CoMFA 등고도 분석결과, phenoxy 고리상 meta-와 para-위치에는 입체적으로 큰 치환기, meta-위치는 음하전, para-위치의 바깥 부분에는 양하전, ortho- 및 para- phenoxy 고리 중앙의 바깥 부분에는 친수성 치환기가 그리고 meta-위치에 소수성 R-치환기가 각각 도입될 경우에 PDS에 대한 저해활성이 증가할 것으로 예측되었다.

The minimum structural requirements of R-phenoxy substituents for herbicidal evaluation of O-(2-(R)-phenoxy)-ethyl-N-aralkylcarbamate (1-15) analogues against phytoene desaturase (PDS) based on the three dimensional quantitative structure-activity relationships (3D-QSARs: CoMFA and CoMSIA) were studied quantitatively. The correlativity and predictability ($r^2_{cv.}=0.753$ and $r^2_{ncv.}=0.964$) of the CoMFA 1 model were higher than those of the rest models. The PDS inhibitory activities from the optimized CoMFA 1 model were depend upon the steric field (44.0%), electrostatic field (36.3%), and hydrophobic field (19.6%) of O-(2-(R)-phenoxy)ethyl-Naralkylcarbamate analogues. From the CoMFA contour maps on the structure of the most active compound (5), if it has the steric favor at meta-, para-position on the phenoxy ring, the negative charge favor in meta-position and positive charge favor in the outside part of para-position, the inhibitory activity will be predicted to increase. Also, if ortho-, para-position, and outside of phenoxy ring are hydrophilic favor, and meta-position is hydrophobic favor, it is predicted that the inhibitory activity against PDS will be able to increase.

키워드

참고문헌

  1. Bartels, P G. and Watson, C W. (1978) Inhibition of carotenoid synthesis by fluridone and norflurazon. Weed Sci.26: 198-203.
  2. Bhattacharya, P., Leonard, J. T. and Roy, K. (2005) Exploring 3D-QSAR of thiazole and thizdiazole derivatives as potent and selective human adenosine A3 receptor antagonists. J. Molecular Mod. 11:516-524. https://doi.org/10.1007/s00894-005-0273-6
  3. Breitenbach, U., Boger, P. and Sandmann, G. (2002) Interaction of bleaching herbicides with the target enzyme $\xi$-carotene desaturase. Pestic. Biochem. Physiol. 73:104-109. https://doi.org/10.1016/S0048-3575(02)00022-6
  4. Breitenbach, J., Zhu, C. and Sandmann, G. (2001) Bleaching herbicide norflurazon inhibits phytoene desaturase by competition with the cofactors. J. Agric. Food Chem. 49:5270-5272. https://doi.org/10.1021/jf0106751
  5. Boger, P. and Sandmann, G. (1998) Carotenoid biosynthesis inhibitor herbicides, mode of actiopn and resistane mechanisms, Pest. Outlook. 9:29-35.
  6. Bramley, P. M. and Pallett, K. E. (1993) Phytoene desaturase: A biochemical target of many bleaching herbiside. Brighton Crop Protection Conference-Weeds.713-722.
  7. Carol, P. and Kuntz, M. (2001) Aplastid terminal oxidase comes to light: implication for carotenoid biosynthesis and chlororespiration. Trends Plant Sci. 6:31-36. https://doi.org/10.1016/S1360-1385(00)01811-2
  8. Dean A. K., Gregory R. A., Thomas C. M., Carl E. S., Dennis E. D., Mcelroy J. S. and David E. K. (2009) Increase in nutritionally important sweet corn kernel carotenoids following mesotrione and atrazine applications. J. Agric. Food Chem. 57:6362-6368. https://doi.org/10.1021/jf9013313
  9. Fujisawa, M., Takita, E., Harade, H., Sakurai, N., Suzuki, H., Ohyama, K., Shibata, D. and Misawa, N. (2009) Pathway engineering of brassica napus seeds using multiple keyenzyme genes involved in ketocarotenoid formation. J. Exp.Bot. 60:1319-1332. https://doi.org/10.1093/jxb/erp006
  10. Jung, S. (2004) Effect of chlorophyll reduction in Arabidopsis thaliana by methyl jasmonate or norflurazon on antioxdant systems. Plant Physiol. Biochem. 42:225-231. https://doi.org/10.1016/j.plaphy.2004.01.001
  11. Kim, J S., Yun, B W., Choi, J S., Kim, T J., Kwak, S S. and Cho, K Y. (2004) Death mechanisms caused by carotenoid biosynthesis inhibitors in green and in undeveloped plant tissues. Pest. Biochem. Physiol. 78:127-139. https://doi.org/10.1016/j.pestbp.2003.12.001
  12. Min, W., Gang, W., Jing, J. and Jiehua, W. (2009) The effect of pds gene silencing on chloroplast pigment composition, thylakoid membrane structrue and photosynthesis dfficiency in tobacco plants. Plant Science. 177:222-226. https://doi.org/10.1016/j.plantsci.2009.04.006
  13. Murthy, V. S. and Kulkarni, V. M. (2002) 3D-QSAR CoMFA and CoMSIA on protein tyrosine phosphatase 1B inhibitors. Bioorg. Med. Chem. 10:2267-2282. https://doi.org/10.1016/S0968-0896(02)00056-1
  14. Ohki, S., Miller-Sulger, R., Wakabayashi, K., Peleiderer, W. and Boger, P. (2003) Phytoene desaturase inhibition by O-(2- phenoxy)ethyl-N-aralkylcarbamates. J. Agric. Food Chem. 51:3049-3055. https://doi.org/10.1021/jf0262413
  15. Salguero, A., de la Morena, B., Vigara, J., Vega, J. M., Vilchez, C. and Leon, R. (2003) Carotenoids as protective response against oxidative damage in Dunaliella bardawil. Biomolecular Engineering. 20:249-253. https://doi.org/10.1016/S1389-0344(03)00065-0
  16. Sandmamm, G., Linden, H. and Boger, P. (1989) Enzyme-kinetic studies on the interacion of norflurazon with phytoene desaturase. Z. Natraforsch. 44(C):787-790.
  17. Sandmann, G. (2001) Carotenoid biosynthesis and biotechnological application. Arch. Biochem. Biophys. 385:4-12. https://doi.org/10.1006/abbi.2000.2170
  18. Sandmann, G. and Boger, P. (1997) Phytoene desatruase as a target for bleaching herbicide activity: toxicology, biochemistry and molecular biology. (Ed. R. M. Roe.) IOS Press. 10:175-179.
  19. Soung, M. G., Lee. Y. J. and Sung, N. D. (2009) 3D-QSAR of herbicidal 2-N-phenylisoindoline-1-one analogues as a new class of potent inhibitors of protox. Bull. Kor. Chem. Soc. 30:613-617. https://doi.org/10.5012/bkcs.2009.30.3.613
  20. Trebst, A. and Depka, B. (1997) Role of carotene in the rapid turnover and assembly of photosystem II in Chlamydomonas reinhardtii. FEBS Letters. 400:359-362. https://doi.org/10.1016/S0014-5793(96)01419-6
  21. Vecchia, F. D., Barbato, R., Rocca, N. L., Moro, I. and Rascio, N. (2001) Responses to bleaching herbicides by leaf chloroplasts of maize plants grown at different temperatures. Exp. Bot. 52:811-820. https://doi.org/10.1093/jexbot/52.357.811
  22. Wold, S., Johansson, E. and Cocchi, M. (1993) PLS-partial least squares projections to latent structures, In 3D-QSAR in drug design: Theory, Methods and Applications (ed. H. Kubinyi), ESCOM, Leiden, pp.523-550.