Status of Underground Thermal Energy Storage as Shallow Geothermal Energy

천부 지열에너지로서의 지하 열에너지 저장 기술 동향

  • Shim, Byoung-Ohan (Geological Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Lee, Chol-Woo (Geological Research Division, Korea Institute of Geoscience and Mineral Resources)
  • 심병완 (한국지질지원연구원, 국토지질연구본부) ;
  • 이철우 (한국지질지원연구원, 국토지질연구본부)
  • Received : 2010.02.16
  • Accepted : 2010.04.12
  • Published : 2010.04.28

Abstract

Recently abrupt climate changes have been occurred in global and regional scales and $CO_2$ reduction technologies became an important solution for global warming. As a method of the solution shallow underground thermal energy storage (UTES) has been applied as a reliable technology in most countries developing renewable energy. The geothermal energy system using thermal source of soil, rock, and ground water in aquifer or cavern located in shallow ground is designed based on the concept of thermal energy recovery and storage. UTES technology of Korea is in early stage and consistent researches are demanded to develop environmental friendly, economical and efficient UTES systems. Aquifers in Korea are suitable for various type of ground water source heat pump system. However due to poor understanding and regulations on various UTES high efficient geothermal systems have not been developed. Therefore simple closed U-tube type geothermal heat pump systems account for more than 90% of the total geothermal system installation in Korea. To prevent becoming wide-spread of inefficient systems, UTES systems considering to the hydrogeothemal properties of the ground should be developed and installed. Also international collaboration is necessary, and continuous UTES researches can improve the efficiency of shallow geothermal systems.

최근 급격한 기후변화가 세계적 또는 국지적으로 발생하고 있으며, 지구온난화에 대한 대책으로 $CO_2$ 저감 기술들이 중요한 해결책으로 여겨지고 있다. 이 기술들에 대한 한 방법으로서 대체에너지를 개발하고 있는 대부분의 국가에서 천부 지하 열에너지 저장 (UTES: underground thermal energy storage)은 신뢰성 있는 냉난방 기술로 적용되어 왔다. 천부의 토양이나 암반, 대수층내 지하수 및 지하공간내 저장된 유체 등의 열 에너지원을 이용하는 지열 시스템은 일반적으로 열에너지의 회복과 저장의 개념을 기반으로 한다. 아직 국내에서는 이러한 기술 개발이 기초적이지만 지속적인 연구들을 수행한다면 보다 친환경적이며 경제성 및 효율이 높은 시스템을 개발할 수 있을 것으로 본다. 국내 지반은 대수층이 전국적으로 분포하고 있으므로 수리지열학적 특성을 활용한 고효율의 시스템 개발이 용이하다. 그러나 UTES에 대한 이해 부족 및 제도적 문제들로 다양한 시스템이 개발되지 못하고 국내에는 90% 이상이 단편적인 폐회로형 지열시스템으로 보급되고 있다. 비효율적인 지열시스템의 보급 확산을 방지하기 위해서는 지반의 수리 지열학적 특성을 반영한 선진화된 UTES 시스템들을 개발할 필요가 있다. 개선된 시스템 보급을 위하여 국제적인 협력이 필수적이며, 지속적인 UTES 연구를 통하여 천부 지열시스템의 효율을 개선시킬 수 있다.

Keywords

References

  1. Bakema, G. and Snijders, A. (1998) ATES and groundsource heat pump in the Netherlands, IEA Heat Pump Center Newsletter, v.16, p.15-17.
  2. Gao, Q., Li, M., Yu, M., Spitler, J.D. and Yan, Y.Y. (2009) Review of development from GSHP to UTES in China and other countries, Renewable and Sustainable Energy Reviews, v.13, p.1383-1394. https://doi.org/10.1016/j.rser.2008.09.012
  3. Geothermal Heat Pump Consortium, Inc. (2009) Galt House East Louisville, KY. http://www.GeoExchange.org/.
  4. Godschalk, M.S. and Bakema, G. (2009) 20,000 ATES Systems in the Netherlands in 2020 - Major step towards a sustainable energy supply, Proceedings of 11th International conference on Thermal Energy Storage.
  5. Hahn, H. and Hahn, K. (2005) Technology development of ground source heat pump syustem applied to aquifer thermal energy storage, Magazine of the SAREK, v.34, p.55-62.
  6. Hahn, J.S., Han, H.S., Hahn, C., Jeon, J.S. and Kim, H.S. (2007) Optimum Pumping Rates of Ground-Water Heat Pump System Using Groundwater or Bank Infilterated Water, Economic and environmental geology v.40, p.833-841.
  7. Hamada, Y., Marutani, K., Nakamura, M., Nagasaka, S., Ochifuji, K., Fuchigami, S. and Yokoyama, S. (2002) Study on underground thermal characteristics by using digital national land information, and its application for energy utilization, Applied Energy, v.72, p.659-675. https://doi.org/10.1016/S0306-2619(02)00055-7
  8. Hamada, Y., Nakamura, M. and Kubota, H. (2007) Field measurements and analyses for a hybrid system for snow storage/melting and air conditioning by using renewable energy, Applied Energy, v.84, p.117-134. https://doi.org/10.1016/j.apenergy.2006.07.002
  9. Holdsworth, B. (2004) Cool thinking: Unlocking earth's energy, Refocus, v.5, No.2, p.28-30. https://doi.org/10.1016/S1471-0846(04)00107-6
  10. IEA-ECES (2009) IEA ECES. http://www.energy-storage.org/.
  11. IF Technology (2009) Geothermal energy. www.iftechnology.com.
  12. Ingrid, W. (2009) The ATES project - a sustainable solution for Stockholm-Arlanda airport The Proceedings of 11th International Conference on Thermal Energy Storage.
  13. Jiurong, L. and Jianping, C. (2005) The Geothermal Resources and Development Plan in the Olympic Green, Beijing, China, The World Geothermal Congress 2005.
  14. Kim, H.S., Jung, W., Ahn, Y. and Hwang, K.S. (2006) A Study on Application of The Available Geothermal Energy From Riverbank (including Alluvial and Riverbed deposits) Filtration, The 2006 Summer Conference Proceedings of The Society of Air-conditioning and Refrigeration Engineering of Korea.
  15. Lee, J.Y. (2009) Current status of ground source heat pumps in Korea, Renewable and Sustainable Energy Reviews, v.13, p.1560-1568. https://doi.org/10.1016/j.rser.2008.10.005
  16. Lee, J.Y., Won, J.H. and Hahn, J.S. (2006) Evaluation of hydrogeologic conditions for groundwater heat pumps: analysis with data from national groundwater monitoring stations, Geosciences Journal, v.10, pp.91-99. https://doi.org/10.1007/BF02910336
  17. Lim, J. (2009) Application of geothermal heat pumps in a renovated campus building, International Journal of Energy Research, Published online in Wiley Inter-Science.
  18. Lund, J., Sanner, B., Rybach, L., Curtis, R. and Hellstrom, G. (2004) Geothermal (Ground-Source) heat pumps - A world overview, GHC Bulletin.
  19. Midttomme, K. (2005) Norway's Geothermal Energy Situation, Proceedings World Geothermal Congress 2005.
  20. Midttomme, K., Ramstad, R., Stene, J., Skarphagen, H. and Borgenes, B. (2008) Status of direct use of geothermal energy in Norway, The 33rd international geological congress.
  21. Ministry of Commerce, Industry and Energy (2007) New & Renewable Energy Research Development & Demonstration strategy 2030, Geothermal.
  22. Morita, K. (2007) Status and Prospect of Ground-Source Heat Pumps in Japan, Refrigeration, v.82, p.45-50.
  23. Nagano, K. (2007) Energy pile system in new building of Sappro city University Thermal Energy Storage for Sustainable Energy Consumption, p.245-253.
  24. Nagano, K., Mochida, T. and Ochifuji, K. (2002) Influence of natural convection on forced horizontal flow in saturated porous media for aquifer thermal energy storage, Applied Thermal Engineering, v.22, p.1299-1311. https://doi.org/10.1016/S1359-4311(02)00056-X
  25. Nielsen, K. (2003) Thermal Energy Storage: A State-of-the-Art. http://www.ntnu.no/em/dokumenter/smartbygg_rapp/Storage_State-of-the-art.pdf.
  26. Nordell, B. (2003) Thermal pollution causes global warming, Global and Planetary Change, v.38, p.305-312. https://doi.org/10.1016/S0921-8181(03)00113-9
  27. Novo, A.V., Bayon, J.R., Castro-Fresno, D. and Rodriguez- Hernandez, J. (2009) Review of seasonal heat storage in large basins: Water tanks and gravel-water pits, Applied Energy, v.87, p.390-397.
  28. Ramamoorthy, M., Jin, H., Chiasson, A.D. and Spitler, J.D. (2001) Optimal Sizing of Hybrid Ground-Source Heat Pump Systems That Use a Cooling Pond as a Supplemental Heat Rejecter-A System Simulation Approach, ASHRAE Transactions, v.107, p.26-38.
  29. Sanner, B., Karytsas, C., Mendrinos, D. and Rybach, L. (2003) Current status of ground source heat pumps and underground thermal energy storage in Europe, Geothermics, v.32, p.579-588.
  30. Sellberg, B. (1990) Sweden's research and development program for thermal energy storage, Tunnelling and Underground Space Technology, v.5, p.85-89. https://doi.org/10.1016/0886-7798(90)90063-P
  31. Shim, B.O. (2008) A review on a thermal response test to measure effective thermal conductivity, KIGAM Bulletin, v.12, p.47-58.
  32. Shim, B.O. and Lee, C. (2007) Hydrogeothermal Verification of a Site for the Groundwater Source Heat Pump System, Journal of the Korean Society for Geosystem Engineering, v.44, p.28-38.
  33. Skogsberg, K. and Nordell, B. (2001) The Sundsvall hospital snow storage, Cold Regions Science and Technology, v.32, p.63-70. https://doi.org/10.1016/S0165-232X(00)00021-5
  34. Spitler, J.D., Rees, S.J., Deng, Z. and Chiasson, A. (2002) R&D Studies applied to standing column well design. ASHRAE 1119-RP, http://www.northeastgeo.com/pdf/RP-1119.pdf.
  35. Ucar, A. and Inalli, M. (2005) Thermal and economical analysis of a central solar heating system with underground seasonal storage in Turkey, Renewable Energy, v.30, p.1005-1019. https://doi.org/10.1016/j.renene.2004.09.015
  36. Wang, H., Qi, C., Wang, E. and Zhao, J. (2009) A case study of underground thermal storage in a solarground coupled heat pump system for residential buildings, Renewable Energy, v.34, p.307-314. https://doi.org/10.1016/j.renene.2008.04.024
  37. Xue, Y., Xie, C. and Li, Q. (1990) Aquifer Thermal Energy Storage: A Numerical Simulation of Field Experiments in China, Water Resources Research, v.26, p.2365-2375. https://doi.org/10.1029/WR026i010p02365
  38. Yang, S.J., Kim, J.Y., Hong, W.W. and Ahn, C.W. (2009) An Analysis of Underground Water Temperature during Heating and Cooling by Small-scale SCW Type GWHP System in Operation Modes, Review of Architecture and Building Science, v.25, p.263-270.
  39. Yasukawa, K. and Takasugi, S. (2003) Present status of underground thermal utilization in Japan, Geothermics, v.32, p.609-618. https://doi.org/10.1016/j.geothermics.2003.07.011
  40. Yumrutas, R. and sal, M. (2005) Modeling of a space cooling system with underground storage, Applied Thermal Engineering, v.25, p.227-239. https://doi.org/10.1016/j.applthermaleng.2004.06.005