• Title/Summary/Keyword: underground thermal energy storage (UTES)

Search Result 2, Processing Time 0.017 seconds

Status of Underground Thermal Energy Storage as Shallow Geothermal Energy (천부 지열에너지로서의 지하 열에너지 저장 기술 동향)

  • Shim, Byoung-Ohan;Lee, Chol-Woo
    • Economic and Environmental Geology
    • /
    • v.43 no.2
    • /
    • pp.197-205
    • /
    • 2010
  • Recently abrupt climate changes have been occurred in global and regional scales and $CO_2$ reduction technologies became an important solution for global warming. As a method of the solution shallow underground thermal energy storage (UTES) has been applied as a reliable technology in most countries developing renewable energy. The geothermal energy system using thermal source of soil, rock, and ground water in aquifer or cavern located in shallow ground is designed based on the concept of thermal energy recovery and storage. UTES technology of Korea is in early stage and consistent researches are demanded to develop environmental friendly, economical and efficient UTES systems. Aquifers in Korea are suitable for various type of ground water source heat pump system. However due to poor understanding and regulations on various UTES high efficient geothermal systems have not been developed. Therefore simple closed U-tube type geothermal heat pump systems account for more than 90% of the total geothermal system installation in Korea. To prevent becoming wide-spread of inefficient systems, UTES systems considering to the hydrogeothemal properties of the ground should be developed and installed. Also international collaboration is necessary, and continuous UTES researches can improve the efficiency of shallow geothermal systems.

Technologies of Underground Thermal Energy Storage (UTES) and Swedish Case for Hot Water (지하 열에너지 저장 기술 및 스웨덴 암반공동내 열수 저장 사례)

  • Park, Doh-Yun;Kim, Hyung-Mok;Ryu, Dong-Woo;Choi, Byung-Hee;SunWoo, Choon;Han, Kong-Chang
    • Tunnel and Underground Space
    • /
    • v.22 no.1
    • /
    • pp.1-11
    • /
    • 2012
  • Thermal energy storage is defined as the temporary storage of thermal energy at high or low temperatures for later use in need. The energy storage can reduce the time or rate mismatch between energy supply and demand, and thus it plays an important role in conserving energy and improving the efficiency of energy utilization, especially for renewable energy sources which provide energy intermittently. Underground thermal energy storage (UTES) can have additional advantages in energy efficiency thanks to low thermal conductivity and high heat capacity of surrounding rock mass. In this paper, we introduced the technologies of underground thermal energy storage and rock caverns for hot water storage in Sweden.