Development and Application of a Nonequilibrium Molecular Dynamics Simulation Method to Study Shock Waves Propagating in Argon Gas

아르곤 기체에서 진행하는 충격파 연구를 위한 비평형 분자동역학 모의실험 개발 및 응용

  • Received : 2009.09.14
  • Accepted : 2009.11.20
  • Published : 2010.01.05

Abstract

A nonequilibrium molecular dynamics(NEMD) simulation method is developed and applied to study shock waves propagating through argon gas. In this simulation method, shock waves are generated by pushing a piston at a constant speed from one side of a simulation box filled with argon molecules. A linear relationship between piston speeds and shock speeds is observed. Thermodynamic properties including density, temperature, and pressure before and after the shock front are obtained from the simulations and compared with the well-known Rankine-Hugoniot equations based on ideal gases. The comparison shows an excellent agreement, indicating that this NEMD simulation method can be employed to investigate various physical properties of shock waves further.

Keywords

References

  1. H. M. Mott-Smith, "The Solution of the Boltzmann Equation for a Shock Wave", Phys. Rev., Vol. 82, No. 6, pp. 885-892, 1951. 6. https://doi.org/10.1103/PhysRev.82.885
  2. T. P. Cotter, "Collision Kinetics in a Shock Wave", Los Alamos Scientific Laboratory Report LA-1413, Los Alamos National Laboratory, New Mexico, 1952.
  3. J. W. Bond,, "Structure of a Shock Front in Argon", Phys. Rev., Vol. 105, No. 6, pp. 1683-1694, 1957. 3. https://doi.org/10.1103/PhysRev.105.1683
  4. A. G. Gaydon and I. R., Hurle, "The Shock Tube in High Temperature Chemical Physics", Reinhod Publishing Co., New York, 1963.
  5. G. A. Bird, "Molecular Gas Dynamics", Clarendon, Oxford, 1976.
  6. G. Phan-Van-Diep, D. Erwin, E. P. Muntz, "Nonequilibrium Molecular Motion in a Hypersonic Shock Wave", Science, Vol. 245, pp. 624-626, 1989. 8. https://doi.org/10.1126/science.245.4918.624
  7. R. L. Conger, L. T. Long, J. A. Parks, and J. H. Johnson, "The Spectrum of the Argon Bomb", Appl. Opt., Vol. 4, pp. 273-276, 1965. 3. https://doi.org/10.1364/AO.4.000273
  8. C. R. Jones and W. C. Davis, "Optical Properties of Explosive-Driven Shock Waves in Noble Gases", LA-9475-MS, Los Alamos Nat'l. Lab., Los Alamos, 1982. 9.
  9. M. P. Allen and Tildesley, "Computer Simulation of Liquids", Clarendon, Oxford, 1987.
  10. B. L. Holian, W. G. Hoover, B. Moran, and G. K. Straub, "Shock-wave Structure Via Nonequilibrium Molecular Dynamics and Navier-Stokes Continuumm Mechanis", Phys. Rev. A, Vol. 22, pp. 2798-2808, 1980. 12. https://doi.org/10.1103/PhysRevA.22.2798
  11. A. B. Belonoshko,, "Atomic Simulation of Shock Wave-Induced Melting in Argon", Science, Vol. 275, No. 5302, pp. 955-957, 1997. 2. https://doi.org/10.1126/science.275.5302.955
  12. B. L. Holian and P. S. Lomdahl, "Plasticity Induced by Shock Waves in Nonequilibrium Molecular Dynamics Simulations", Science, Vol. 280, pp. 2085-2088, 1998. 6. https://doi.org/10.1126/science.280.5372.2085
  13. L. Cai, Q. Chen, J. Zhang, D. Chen, F. Jing, "Atomic Simulation of Shock Compressed Liquid Helium", Physica B Vol. 269, pp. 304-309, 1999. 9. https://doi.org/10.1016/S0921-4526(99)00142-8
  14. J. D. Lambert, "Vibrational and Rotational Relaxation in Gases", Clarendon Press, Oxford, 1977.
  15. J. P. Hansen and I. R. McDonald, "Theory of Simple Liquids", Academic Press Inc., London, 1986.