Influence of Different Strains of Agrobacterium rhizogenes on Hairy Root Induction and Rosmarinic Acid Production in Agastache rugosa Kuntze

Agrobacterium rhizogenes strains이 배초향 모상근 유도와 Rosmarinic acid 생산에 미치는 영향

  • Kim, Jong-Se (Department of Biology, Chosun University) ;
  • Oh, Eun-Jeong (Department of Biology, Chosun University) ;
  • Lee, Sook-Young (Research Center for Oral Disease Regulation of the Aged, Chosun University)
  • 김종세 (조선대학교 생물학과) ;
  • 오은정 (조선대학교 생물학과) ;
  • 이숙영 (조선대학교 노인구강질환제어연구센터)
  • Received : 2009.10.07
  • Accepted : 2010.01.21
  • Published : 2010.02.28

Abstract

Rosmarinic acid, an ester of caffeic acid with 3,4-dihydroxyphenyl lactic acid, is one of the main active constituents of Agastache rugosa Kuntze and has an astringent property, antioxidant capacity, anti-inflammatory activity, antimutagenic ability, antimicrobial capacity, and an antiviral property. Five different strains of Agrobacterium rhizogenes differed in their ability to induce Korean mint (Agastache rugosa Kuntze) hairy roots and also showed varying effects on the growth and rosmarinic acid production in hairy root cultures. A. rhizogenes R1601 is the most effective strain for the induction (72.90%), growth (13.50 g/l) and rosmarinic acid production (22.60 mg/g) in hairy root of Korean mint. Our results demonstrate that use of suitable strains of A. rhizogenes may allow study of the regulation of rosmarinic acid biosynthesis in hairy root cultures of Agastache rugosa.

rosmarinic acid 생산에 미치는 영향을 알아보기 위하여 5계통의 strain (13333, 15834, R1000, R1200, R1601)을 이용하여 조사한 결과 A. rhizogenes R1601이 가장 높은 72.9%의 모상근 유도율을 보였다. 모상근 유도시 모상근 발생 수와 길이 신장에 미치는 영향을 조사한 결과도 A. rhizogenes R1601으로 감염시킨 잎 조직에서 평균 5.4개의 모상근이 발생하였으며, 평균 2.0 cm의 길이 신장으로 가장 좋은 결과를 나타냈다. 다섯 계통의 A. rhizogenes감염으로부터 유도된 각각의 모상근의 생육은 서러 다른 양상을 보였으나 경향은 모상근유도 결과와 유사하였다. A. rhizogenes R1601 감염으로 유도된 모상근의 생육은 배양 2주후 건물중을 조사한 결과 13.5 g/l로 다른 계통에서 유도된 모상근 보다 생육이 양호하였으며, Rosmarinic acid 생산량도 22.6 mg/g D.W.로 다른 계통에 비하여 가장 높게 나타났다. A. rhizogenes R1601이 배초향 모상근 유도, 생육과 rosmarinic acid 생산에 가장 좋은 적합한 계통이었음을 알 수 있었다.

Keywords

References

  1. Broothaerts, W., H.J. Mitchell, B. Weir, S. Kaines, L.M.A. Smith, W. Yang, J.M. Mayer, C. Roa-Rodriguez and R.A. Jefferson. 2005. Gene transfer to plants by diverse species of bacteria. Nature. 433:629-633. https://doi.org/10.1038/nature03309
  2. Giri, A. and M.J. Narasu. 2000. Transgenic hairy roots: recent trends and applications. Biotechnology Advances. 18:1-22. https://doi.org/10.1016/S0734-9750(99)00016-6
  3. Guillon, S., J. Tremouillaux-Guiller, P.K. Pati, M. Rideau and P. Gantet. 2006. Harnessing the potential of hairy roots: dawn of a new era. Trends Biotechnol. 24:403-409. https://doi.org/10.1016/j.tibtech.2006.07.002
  4. Hamill, J.D., A.J. Parr, M.J.C. Rhodes, R.J. Robins and N.J. Walton. 1987. New routes to plant secondary products. Biotechnology. 5:800-804. https://doi.org/10.1038/nbt0887-800
  5. Hong, J.H., J.H. Choi, S.R. Oh, H.K. Lee, J.H. Park, K.Y. Lee, J.J. Kim, T.S. Jeong and G.T. Oh. 2001. Inhibition of cytokine -induced vascular cell adhesion molecule-1 expression; possible mechanism for anti-atherogenic effect of Agastache rugosa. FEBS Lett. 495:142-147. https://doi.org/10.1016/S0014-5793(01)02379-1
  6. Ionkova, I., T. Kartnig and W. Alfermann. 1997. Cycloartane saponin production in hairy root cultures of Astragalus mongholicus. Phytochemistry. 45:1597-1600. https://doi.org/10.1016/S0031-9422(97)00247-1
  7. Kim, H.K., S.R. Oh, H.K. Lee and H Huh. 2001a. Benzothiadiazole enhances the elicitation of rosmarinic acid production in a suspension culture of Agastache rugosa O.Kuntze. Biotechnology Letters. 23:55-60. https://doi.org/10.1023/A:1026738409671
  8. Kim, T.H., J.H. Shin, H.H. Baek and H.J. Lee. 2001b. Volatile flavour compounds in suspension culture of Agastache rugosa Kuntze (Korean mint). Journal of the science of food and agriculture. 81:569-575. https://doi.org/10.1002/jsfa.845
  9. Lee, J., Y.S. Kim and D. Park. 2007. Rosmarinic acid induces melanogenesis through protein kinase A activation signaling. Biochem Pharmacol. 74:960-968. https://doi.org/10.1016/j.bcp.2007.06.007
  10. Lee, S.Y., H. Xu, Y.K. Kim and S.U. Park. 2008. Rosmarinic acid production in hairy root cultures of Agastache rugosa Kuntze. World Journal of Microbiology and Biotechnology 24:969-972. https://doi.org/10.1007/s11274-007-9560-y
  11. Ly T.N., M. Shimoyamada and R. Yamauchi. 2006. Isolation and characterization of rosmarinic acid oligomers in Celastrus hindsii Benth leaves and their antioxidative activity. J Agric Food Chem. 54:3786-3793. https://doi.org/10.1021/jf052743f
  12. Moreno, S., T. Scheyer, C.S. Romano and A.A. Vojnov. 2006. Antioxidant and antimicrobial activities of rosemary extracts linked to their polyphenol composition. Free Radic Res. 40: 223-231. https://doi.org/10.1080/10715760500473834
  13. Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant. 15:473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  14. Nicoll, S.M., L.A. Brigham, F.S. Wen and M.C. Hawes. 1995. Expression of transferred genes during hairy root development in pea. Plant Cell Tissue Organ Cult. 42:57–66.
  15. Oh, H.M., Y.J. Kang, S.H. Kim, Y.S. Lee, M.K. Park, J.M. Heo, J. Sun, H.J. Kim, E.S. Kang, H.J. Kim, H.G. Seo, J.H. Lee, H.S. Yun-Choi and K.C. Chang. 2005. Agastache rugosaleaf extract inhibits the iNOS expression in ROS 17/2.8 cells activated with TNF-alpha and IL-1beta. Arch Pharm Res. 28:305-310. https://doi.org/10.1007/BF02977797
  16. Park, S.U., M.R. Uddin, H. Xu, Y.K. Kim and S.Y. Lee. 2008. Biotechnological applications for rosmarinic acid production in plant. African Journal of Biotechnology. 7:4959-4965.
  17. Parnham, M.J. and K. Kesselring. 1985. Rosmarinic acid. Drugs of the Future. 10:756-757. https://doi.org/10.1358/dof.1985.010.09.71743
  18. Petersen, M., M.S.J. Simmonds. 2003. Rosmarinic acid. Phytochemistry. 62:121-125. https://doi.org/10.1016/S0031-9422(02)00513-7
  19. Shin, S. and C.A. Kang. 2003. Antifungal activity of the essential oil of Agastache rugosa Kuntze and its synergism with ketoconazole. Lett. Appl. Microbiol. 36:111-115. https://doi.org/10.1046/j.1472-765X.2003.01271.x
  20. Signs, M. and H. Flores. 1990. The biosynthetic potential of plant roots. Bioessays. 12:7-13. https://doi.org/10.1002/bies.950120103
  21. Tiwari, R.K., M. Trivedi, Z.C. Guang, G.Q. Guo and G.C. Zheng. 2007. Genetic transformation of Gentiana macrophylla with Agrobacterium rhizogenes:growth and production of secoiridoid glucoside gentiopicroside in transformed hairy root cultures. Plant Cell Rep. 26:199-210. https://doi.org/10.1007/s00299-006-0236-0
  22. Xu, H., Y.K. Kim, X. Jin, S.Y. Lee and S.U. Park. 2008. Rosmarinic Acid Biosynthesis in Callus and Cell Cultures of Agastache rugosa Kuntze. Journal of Medicinal Plants Research. 2:237-241.
  23. Zehra, M., S. Banerjee, S. Sharma. and S. Kumar. 1999. Influence of Agrobacterium rhizogenes strains on biomass and alkaloid productivity in hairy root lines of Hyoscyamus muticus and H. albus. Planta Med. 65:60-63. https://doi.org/10.1055/s-1999-13964