Analytical Determination of Cyanide in Maesil (Prunus mume) Extracts

매실추출제품의 시안화합물 분석법에 관한 연구

  • 김은정 (부산지방식품의약품안전청) ;
  • 이휘재 (부산지방식품의약품안전청) ;
  • 장진욱 (부산지방식품의약품안전청) ;
  • 김인영 (부산지방식품의약품안전청) ;
  • 김도형 (부산지방식품의약품안전청) ;
  • 김현아 (부산지방식품의약품안전청) ;
  • 이수민 (부산지방식품의약품안전청) ;
  • 장호원 (부산지방식품의약품안전청) ;
  • 김상엽 (부산지방식품의약품안전청) ;
  • 장영미 (부산지방식품의약품안전청) ;
  • 임동길 (부산지방식품의약품안전청) ;
  • 이선희 (부산지방식품의약품안전청)
  • Received : 2009.10.01
  • Accepted : 2010.01.19
  • Published : 2010.04.30

Abstract

Picrate, enzyme-picrate and instrumental analysis methods using IC (Ion Chromatography) and HPLC (High Performance Liquid Chromatography) were compared for their effectiveness in determining cyanide in extracts of Maesil, which is classified as a harmful substance. First, the picrate method showed the shortest analysis time (about 5 hr). The color of picrate paper changed at 0.01 mg/$200\;mL\;CN^-$. However, it was difficult to detect cyanide from amygdalin of glucosides. Second, we performed a qualitative analysis for total cyanide (free cyanide and cyanide from amygdalin) by the enzyme-picrate method using $\beta$-glucosidase and a quantitative analysis by spectrophotometry. Finally, analysis of cyanide by IC and HPLC required the longest determining time (about 17 hr) as well as pretreatment for each free cyanide and amygdalin. These results suggest that enzyme-picrate is the most effective analysis method for the detection of cyanide in Maesil extracts.

건강기능식품공전에서 유해물질로 분류되어 관리되고 있는 매실추출제품 중 시안화합물의 효과적인 분석을 위하여 피크린산지법, 효소-피크린산지법, IC 및 HPLC를 이용한 기기분석법을 검증하고 비교하였다. 먼저, 피크린산지법은 가장 분석소요시간이 짧았으며, 0.01 mg/$200\;mL\;CN^-$에서 피크린산지의 변색이 관찰되었으나, 배당체 형태의 아미그달린으로부터 유래되는 시안화합물을 검출하는 것에 한계가 있었다. 반면, $\beta$-glucosidase를 이용한 효소-피크린산지법은 아미그달린으로부터 유래되는 시안화합물을 포함한 총 시안화합물의 정성분석 및 분광광도계를 이용한 정량 분석이 가능하였다. 마지막으로, IC 및 HPLC를 이용한 시안화합물 분석법은 유리되어 있는 시안화합물과 아미그달린을 분석하기 위해 각각 서로 다른 전처리 과정을 거쳐야 하며, 분석시간 또한 가장 많이 소요되었다. 이러한 결과들을 미루어 볼 때, 매실추출제품에 존재하는 시안화합물 분석법으로는 효소-피크린산 지법이 가장 효과적임을 알 수 있었다.

Keywords

References

  1. Hwang JY, Ham JW, Nam SH. The antioxidant activity of maesil (Prunus mume). Korean J. Food Sci. Technol. 36: 461-464 (2004)
  2. Jung DH, You JY. Fermented Foods of Vegetables. Gangilsa, Seoul, Korea. pp. 130-134 (1997)
  3. Kim JH, Xiao PG. Traditional Drugs of the East. Younglimsa, Jeonju, Korea. pp. 88-90 (1989)
  4. Korea Food & Drug Administration. Functional material on health/functional food. Available from: http://hfoodi.kfda.go.kr/am/menu.jsp?code1=00100040. Accessed Aug. 10, 2009.
  5. Vetter J. Plant cyanogenic glycosides. Toxicon 38: 11-36 (2000) https://doi.org/10.1016/S0041-0101(99)00128-2
  6. Kim DH. Food Chemistry. Tamgudang, Seoul, Korea. pp. 45-53 (1995)
  7. Abd EI-Aal MH, Hamza MA, Rahma EH. In vitro digestibility, physicochemical and functional properties of apricot kernel proteins. Food Chem. 19: 197-211 (1986) https://doi.org/10.1016/0308-8146(86)90070-1
  8. Tuncel G, Nout MJR, Brimer L, Goktan D. Toxicological, nutritional and microbiological evalution of tempe fermentation with Rhizopus oligosporas of bitter and sweet apricot seeds. Int. J. Food Microbiol. 11: 337-344 (1990) https://doi.org/10.1016/0168-1605(90)90027-3
  9. Tylleskar T, Rosling H, Banea M, Bikangi N, Cooke RD, Poulter NH. Cassava cyanogens and konzo, an upper motoneuron disease found found in Africa. Lancet 339: 208-211 (1992) https://doi.org/10.1016/0140-6736(92)90006-O
  10. Bradbury MG, Egan SV, Bradbury JH. Picrate paper kits for determination of total cyanogens in cassava roots and all forms of cyanogens in cassava products. J. Sci. Food Agr. 79: 593-601 (1999) https://doi.org/10.1002/(SICI)1097-0010(19990315)79:4<593::AID-JSFA222>3.0.CO;2-2
  11. Bradbury JH. Development of a sensitive picrate method to determine total cyanide and acetone cyanohydrins contents of gari from cassava. Food Chem. 113: 1329-1333 (2009) https://doi.org/10.1016/j.foodchem.2008.08.081
  12. Haque MR, Bradbury JH. Total cyanide determination of plants and foods using the picrate and acid hydrolysis methods. Food Chem. 77: 107-114 (2002) https://doi.org/10.1016/S0308-8146(01)00313-2
  13. Drochioiu G, Arsene C, Murariu M, Oniscu C. Analysis of cyanogens with resorcinol and picrate. Food Chem. Toxicol. 46: 3540-3545 (2008) https://doi.org/10.1016/j.fct.2008.09.005
  14. Egan SV, Yeoh HH, Bradbury JH. Simple picrate paper kit for determination of the cyanogenic potential of cassava flour. J. Sci. Food Agr. 76: 39-48 (1998) https://doi.org/10.1002/(SICI)1097-0010(199801)76:1<39::AID-JSFA947>3.0.CO;2-M
  15. Sumiyoshi K, Yagi T, Nakamura H. Determination of cyanide by high-performance liquid chromatography using postcolumn derivatization with O-phthalaldehyde. J. Chromatogr. A 690: 77-82 (1995) https://doi.org/10.1016/0021-9673(94)00976-G
  16. Miralles E, Prat D, Compano R, Granados M. Assessment of different fluorimetric reaction for cyanide determination in flow systems. Analyst 122: 553-558 (1997) https://doi.org/10.1039/a608422b
  17. Hong JH, Lee DH, Han SB, Lee DH, Lee KB, Park JS, Chung HW, Lee SY, Park SG, Park ER, Hong KH, Han JW, Kim MC, Song IS. The establishment of analytical method, and monitoring of toxins in food materials. The Annual Report of KFDA 8: 442-452 (2004)
  18. Christison TT, Rohrer JS. Direct determination of free cyanide in drinking water by ion chromatography with pulsed amperometric detection. J. Chromatogr. A 1155: 31-39 (2007) https://doi.org/10.1016/j.chroma.2007.02.083
  19. ICH, ICH Topic Q2 (R1) Validation of analytical procedures: Text and methodology. CPMP/ICH/381/95 European Medicines Agency (1995)
  20. Sano A, Takezawa M, Takitani S. Fluorometric determination of cyanide with O-phthaldehyde and taurine. Anal. Sci. 2: 491-492 (1986) https://doi.org/10.2116/analsci.2.491
  21. Ge BY, Chen HX, Han FM, Chen T. Identification of amygdalin and its major metabolites in rat urine by LC-MS/MS. J. Chromatogr. B 857: 281-286 (2007) https://doi.org/10.1016/j.jchromb.2007.07.036