References
- Hwang JY, Ham JW, Nam SH. The antioxidant activity of maesil (Prunus mume). Korean J. Food Sci. Technol. 36: 461-464 (2004)
- Jung DH, You JY. Fermented Foods of Vegetables. Gangilsa, Seoul, Korea. pp. 130-134 (1997)
- Kim JH, Xiao PG. Traditional Drugs of the East. Younglimsa, Jeonju, Korea. pp. 88-90 (1989)
- Korea Food & Drug Administration. Functional material on health/functional food. Available from: http://hfoodi.kfda.go.kr/am/menu.jsp?code1=00100040. Accessed Aug. 10, 2009.
- Vetter J. Plant cyanogenic glycosides. Toxicon 38: 11-36 (2000) https://doi.org/10.1016/S0041-0101(99)00128-2
- Kim DH. Food Chemistry. Tamgudang, Seoul, Korea. pp. 45-53 (1995)
- Abd EI-Aal MH, Hamza MA, Rahma EH. In vitro digestibility, physicochemical and functional properties of apricot kernel proteins. Food Chem. 19: 197-211 (1986) https://doi.org/10.1016/0308-8146(86)90070-1
- Tuncel G, Nout MJR, Brimer L, Goktan D. Toxicological, nutritional and microbiological evalution of tempe fermentation with Rhizopus oligosporas of bitter and sweet apricot seeds. Int. J. Food Microbiol. 11: 337-344 (1990) https://doi.org/10.1016/0168-1605(90)90027-3
- Tylleskar T, Rosling H, Banea M, Bikangi N, Cooke RD, Poulter NH. Cassava cyanogens and konzo, an upper motoneuron disease found found in Africa. Lancet 339: 208-211 (1992) https://doi.org/10.1016/0140-6736(92)90006-O
- Bradbury MG, Egan SV, Bradbury JH. Picrate paper kits for determination of total cyanogens in cassava roots and all forms of cyanogens in cassava products. J. Sci. Food Agr. 79: 593-601 (1999) https://doi.org/10.1002/(SICI)1097-0010(19990315)79:4<593::AID-JSFA222>3.0.CO;2-2
- Bradbury JH. Development of a sensitive picrate method to determine total cyanide and acetone cyanohydrins contents of gari from cassava. Food Chem. 113: 1329-1333 (2009) https://doi.org/10.1016/j.foodchem.2008.08.081
- Haque MR, Bradbury JH. Total cyanide determination of plants and foods using the picrate and acid hydrolysis methods. Food Chem. 77: 107-114 (2002) https://doi.org/10.1016/S0308-8146(01)00313-2
- Drochioiu G, Arsene C, Murariu M, Oniscu C. Analysis of cyanogens with resorcinol and picrate. Food Chem. Toxicol. 46: 3540-3545 (2008) https://doi.org/10.1016/j.fct.2008.09.005
- Egan SV, Yeoh HH, Bradbury JH. Simple picrate paper kit for determination of the cyanogenic potential of cassava flour. J. Sci. Food Agr. 76: 39-48 (1998) https://doi.org/10.1002/(SICI)1097-0010(199801)76:1<39::AID-JSFA947>3.0.CO;2-M
- Sumiyoshi K, Yagi T, Nakamura H. Determination of cyanide by high-performance liquid chromatography using postcolumn derivatization with O-phthalaldehyde. J. Chromatogr. A 690: 77-82 (1995) https://doi.org/10.1016/0021-9673(94)00976-G
- Miralles E, Prat D, Compano R, Granados M. Assessment of different fluorimetric reaction for cyanide determination in flow systems. Analyst 122: 553-558 (1997) https://doi.org/10.1039/a608422b
- Hong JH, Lee DH, Han SB, Lee DH, Lee KB, Park JS, Chung HW, Lee SY, Park SG, Park ER, Hong KH, Han JW, Kim MC, Song IS. The establishment of analytical method, and monitoring of toxins in food materials. The Annual Report of KFDA 8: 442-452 (2004)
- Christison TT, Rohrer JS. Direct determination of free cyanide in drinking water by ion chromatography with pulsed amperometric detection. J. Chromatogr. A 1155: 31-39 (2007) https://doi.org/10.1016/j.chroma.2007.02.083
- ICH, ICH Topic Q2 (R1) Validation of analytical procedures: Text and methodology. CPMP/ICH/381/95 European Medicines Agency (1995)
- Sano A, Takezawa M, Takitani S. Fluorometric determination of cyanide with O-phthaldehyde and taurine. Anal. Sci. 2: 491-492 (1986) https://doi.org/10.2116/analsci.2.491
- Ge BY, Chen HX, Han FM, Chen T. Identification of amygdalin and its major metabolites in rat urine by LC-MS/MS. J. Chromatogr. B 857: 281-286 (2007) https://doi.org/10.1016/j.jchromb.2007.07.036