갈조류 유래 알긴산이 HepG2 간세포 독성에 미치는 영향

Toxic Effects of Sodium Alginate from Brown Algae on HepG2 Human Liver Cell Functions

  • 강남성 (성균관대학교 약학부) ;
  • 표석능 (성균관대학교 약학부) ;
  • 정다혜 (성균관대학교 약학부) ;
  • 음현애 (성균관대학교 약학부) ;
  • 장기효 (강원대학교 식품영양학과) ;
  • 엄병헌 (한국과학기술연구원(KIST) 강릉분원 천연물소재연구센터) ;
  • 손은화 (강원대학교 생약자원개발학과)
  • Kang, Nam-Sung (College of Pharmacy, Sungkyunkwan University) ;
  • Pyo, Suhk-Neung (College of Pharmacy, Sungkyunkwan University) ;
  • Jung, Da-Hye (College of Pharmacy, Sungkyunkwan University) ;
  • Eum, Hyun-Ae (College of Pharmacy, Sungkyunkwan University) ;
  • Jang, Ki-Hyo (Department of Food and Nutrition, Kangwon National University) ;
  • Um, Byung-Hun (Natural Product Research Center, Korea Institute of Science and Technology KIST Gangneung Institute) ;
  • Sohn, Eun-Hwa (Department of Herbal Medicine Resource, Kangwon National University)
  • 투고 : 2010.02.17
  • 심사 : 2010.04.16
  • 발행 : 2010.04.30

초록

갈조류 유래 alginate 성분은 간이식술에 있어서 cell microencapsulation시키는 matrix로써 임상적인 응용이 시도되고 있다. 이에 본 연구에서는 alginate의 간세포에 대한 안전성을 평가하기 위하여, 간세포를 자극하는 NO, iNOS, TGF-${\beta}1$, IL-$1{\beta}$의 분비 및 발현량을 측정하였으며, 실험 결과 모두 증가시켰다. Alginate가 간세포를 자극하여 이러한 요소들을 증가시키는 것은 간염 및 간섬유화 등의 간질환을 일으킬 수 있다는 가능성을 제시하고 있으며, 이러한 결과는 간에 적용하는 alginate를 사용시에는 안전성이 요구되는 농도 조절 및 alginate의 자극 효과를 억제할 수 있는 새로운 재료의 첨가 등에 대한 고려를 제시할 수 있을 것으로 사료된다.

Alginates are polysaccharides isolated from brown algae with gel-forming properties composed of 1,4-linked beta-D-mannuronic acid (M), alpha-L-guluronic acid (G), and alternating (MG) blocks. In this study, we have examined the toxic effects of high M-alginate to activate HepG2 human liver cells. Alginate enhanced the NO production and iNOS protein expression in HepG2 cells. In addition, alginates stimulated the HepG2 to induce IL-1 release and expression of TGF-beta1, which could influence the liver inflammation and chirrhosis. These findings suggest that high M-alginate form brown algae may have toxic effects on liver cells.

키워드

참고문헌

  1. Blobe, G.C., Schiemann, W.P. and Lodish, H.F. 2000. Role of transforming growth factor-$\beta$ in human disease. N. Engl. J. Med. 342:1350-1358. https://doi.org/10.1056/NEJM200005043421807
  2. Bradford, M.M. 1976. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 72:248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  3. Geller, D.A., Freeswick, P.D., Nguyen, D., Nussler, A.K., Di Silvio, M., Shapiro, R.A., Wang, S.C., Simmons, R.L. and Billiar, T.R. 1994. Differential induction of nitric oxide synthase in hepatocytes during endotoxemia and the acutephase response. Arch. Surg. 129:165-171. https://doi.org/10.1001/archsurg.1994.01420260061008
  4. Hartsfield, C.L. 2002. Cross talk between carbon monoxide and nitric oxide. Antioxid. Redox. Signal. 4:301-307. https://doi.org/10.1089/152308602753666352
  5. Hierholzer, C., Harbrecht, B., Menezes, J.M., Kane, J., MacMicking, J., Nathan, C.F., Peitzman, A.B., Billiar, T.R., and Tweardy, D.J. 1998. Essential role of induced nitric oxide in the initiation of the inflammatory response after hemorrhagic shock. J. Exp. Med. 187:917-928. https://doi.org/10.1084/jem.187.6.917
  6. Iizima-Mizui, N., Fujihara, M., Himeno, J., Komiyama, K., Umezawa, I. and Nagumo, T. 1985. Antitumor activity of polysaccharide fraction from the brown seaweed Sargassum Kjellmanianum. Kitasato. Arch. Exp. Med. 58:59-65.
  7. Krough, J., Hoiby, H., Stenvang, N. and Pedersen, S. 1991. Experimental immunization with Pseudomonas aeruginosa alginate induces IgA and IgG antibody response. APMIS. 99(12):1061-1068. https://doi.org/10.1111/j.1699-0463.1991.tb01301.x
  8. McClain, C.J., Song, Z., Barve, S.S. and Hill, D.B. and Deaciuc, I. 2004. Recent advances in alcoholic liver disease: dysregulated cytokine metabolism in alcoholic liver disease. Am. J. Physiol. Gastrointest. Liver Physiol. 287:G497-502. https://doi.org/10.1152/ajpgi.00171.2004
  9. Nagata, K., Suzuki, H., Nagata, K., Suzuki, H., Sakaguchi, S., Sakaguchi, S. 2007. Common pathogenic mechanism in development progression of liver injury caused by non-alcoholic or alcoholic steatohepatitis. J. Toxicol. Sci. 32(5):453-468. https://doi.org/10.2131/jts.32.453
  10. Otterlei, M., Ostgaard, K., Skjak-Braek, G., Smidsrod, O., Soon-Shiong, P. and Espevik, T. 1991. Induction of cytokine production from human monocytes stimulated by alginate. J. Immunother. 10:286-291. https://doi.org/10.1097/00002371-199108000-00007
  11. Pedersen, S.S., Moller, H., Espersen, F., Sorensen, C.H., Jensen, T. and Hoiby, N. 1992. Mucosal immunity to Pseudomonas aeruginosa alginate in cystic fibrosis. APMIS. 100(4):326-334. https://doi.org/10.1111/j.1699-0463.1992.tb00879.x
  12. Schlictman, D., Kavanaugh-Black, A., Shankar, S. and Chakrabarty, A.M. 1994. Energy metabolism and alginate biosynthesis in Pseudomonas aeruginosa; Role of the tricarboxylic acid cycle. J. Bacteriol. 176(19):6023-6029. https://doi.org/10.1128/jb.176.19.6023-6029.1994
  13. Seljelid, R. 1989. Tumor regression after treatment with aminated $\beta1-3D$ polyglucose is initiated by circulatory failure. Scand. J. Immunol. 29:181-188. https://doi.org/10.1111/j.1365-3083.1989.tb01115.x
  14. Soon-Shiong, P., Otterlie, M., Skjak-Braek, G., Smidsrod, O., Heintz, R., Lanza, R.P. and Espevik, T. 1991. An Immunologic basis for the fibrotic reaction to implantation microcapsules. Transplant. Proc. 23:758-759.
  15. Taylor, B.S., de Vera, M.E., Ganster, R.W., Wang, Q., Shapiro, R.A., Morris Jr., S.M., Billiar, T.R. and Geller, D.A. 1998. Multiple NF-kappaB enhancer elements regulate cytokine induction of the human inducible nitric oxide synthase gene. J. Biol. Chem. 273:15148-15156. https://doi.org/10.1074/jbc.273.24.15148
  16. Wang, Y., Vodovotz, Y., Kim, P.K.M., Zamora, R. and Billiar, T.R. 2001. Mechanisms of hepatoprotection by nitric oxide. Ann. N.Y. Acad. Sci. 962:415-422.
  17. Zamora, R., Vodovotz, Y. and Billiar, T.R. 2000. Inducible nitric oxide synthase and inflammatory diseases, Mol. Med. 6:347-373.