지상원격측정 센서를 이용한 벼의 생체량 및 질소 영양 평가

Evaluation of Biomass and Nitrogen Status in Paddy Rice Using Ground-Based Remote Sensors

  • 투고 : 2010.11.12
  • 심사 : 2010.12.07
  • 발행 : 2010.12.31

초록

지상원격측정 센서 반사율 지표는 비파괴적으로 실시간으로 빠르게 생육 중 작물의 생체량, 질소 스트레스 정도를 예측할 수 있는 도구로 연구되고 있다. 본 연구의 목적은 질소 시비량 수준별로 재배된 벼 (Oryza sativa L.)의 질소흡수량, 생체량 및 수량과 지상원격측정센서 반사율 지표들의 상호관계로부터 효율적인 반사율 지표를 선발하고 반사율 지표를 통한 벼 생육 중 질소시비수준을 평가하고자 하였다. 질소시비수준 0, 70, 100, 130 kg N $ha^{-1}$별로 처리된 시험구의 캐노피 반사율을 여러 종류의 수동형과 능동형 지상원격측정 센서로 각 생육시기별로 측정하였고 생체량과 질소흡수량 및 수량을 조사하여 상호관계를 분석하였다. 수동형 센서보다는 능동형 센서가 생육시기별 벼의 지상부 건물중, 수량, 질소농도 및 질소흡수량과 더 밀접한 상관을 나타냈으며 생육 후반으로 갈수록 상관계수 크기는 낮아지는 경향이었으나 유의성은 P<0.01 수준이 계속 유지되었다. 가장 밀접한 관계를 보인 반사율 지표는 Crop Circle-active 센서로 측정한 NIR/Red, NIR/Amber 지표였다. 특히 이삭거름 시비시기인 7월 중순의 Crop Circle 센서로 측정한 NIR/Red, NIR/Amber 지표는 건물중, 엽면적 지수와 상관계수 0.92 이상의 고도로 유의성 있는 정의 상관관계 (P<0.01)를 보였다. NIR/Red와 NIR/Amber 지표로 계산한 충족지수의 시비수준에 대한 회귀에서 회귀곡선은 충족지수 변동의 91%와 92%를 각각 설명하였다. 따라서 7월 중순~8월 초에 측정한 반사율지표의 충족지수는 실시간에 비파괴적으로 시비수준을 예측하여 위치별로 변량적인 질소시비량을 결정할 수 있는 방법으로 활용 가능할 것으로 판단되었다.

Ground-based remote sensing can be used as one of the non-destructive, fast, and real-time diagnostic tools for quantifying yield, biomass, and nitrogen (N) stress during growing season. This study was conducted to assess biomass and nitrogen (N) status of paddy rice (Oryza sativa L.) plants under N stress using passive and active ground-based remote sensors. Nitrogen application rates were 0, 70, 100, and 130 kg N $ha^{-1}$. At each growth stage, reflectance indices measured with active sensor showed higher correlation with DW, N uptake and N concentration than those with the passive sensor. NIR/Red and NIR/Amber indices measured with Crop Circle active sensors generally had a better correlation with dry weight (DW), N uptake and N content than vegetation indices from Crop Circle passive sensor and NDVIs from active sensors. Especially NIR/Red and NIR/amber ratios at the panicle initiation stage were most closely correlated with DW, N content, and N uptake. Rice grain yield, DW, N content and N uptake at harvest were highly positively correlated with canopy reflectance indices measured with active sensors at all sampling dates. N application rate explains about 91~92% of the variability in the SI calculated from NIR/Red or NIR/Amber indices measured with Crop Circle active sensors on 12 July. Therefore, the in-season sufficiency index (SI) by NIR/Red or NIR/Amber index from Crop Circle active sensors can be used for determination of N application rate.

키워드

참고문헌

  1. Balasubramanian, V., A. C. Morales, R. T. Cruz, and S. Abdulrachman. 1999. On-farm adaptation of knowledgeintensive nitrogen management technologies for rice system. Nutr. Cycling Agroecosyst. 53:59-69.
  2. Barker, D.W. and J.E. Sawyer. 2010. Using active canopy sensors to quantify corn nitrogen stress and nitrogen application rate. Agron. J. 102:964-971. https://doi.org/10.2134/agronj2010.0004
  3. Bausch, W.C. and H.R. Duke. 1996. Remote sensing of plant nitrogen status in corn, Transaction of the ASAE, 39:1869-1875.
  4. Blackmer, T.M., J.S. Schepers, G.E. Varvel, and E.A. Walter-Shea. 1996. Nitrogen deficiency detection using reflected shortwave radiation from irrigated corn canopies. Agron. J. 88:1-5. https://doi.org/10.2134/agronj1996.00021962008800010001x
  5. Chang, K.W., Y. Shen, and J.C. Lo. 2005. Predicting rice yield using canopy reflectance measured at booting stage. Agron. J. 97:872-878. https://doi.org/10.2134/agronj2004.0162
  6. Daughtry, C.S.T., C.L. Walthall, M.S. Kim, E.B. De Colstoun, and J.E. McMurtrey. 2000. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens. Environ. 74:229-239. https://doi.org/10.1016/S0034-4257(00)00113-9
  7. Dellinger, A.E., J.P. Schmidt, and D.B. Beegle. 2008. Developing nitrogen fertilizer recommendations for corn using an active sensor. Agron. J. 100:1546-1552. https://doi.org/10.2134/agronj2007.0386
  8. Gitelson, A.A., Y.J. Kaufman, and M.N. Merzlyak. 1996. Use of green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 58:289-298. https://doi.org/10.1016/S0034-4257(96)00072-7
  9. Hong, S.Y., J.T. Lee, S.K. Rim, W.K. Jung, and I.S. Jo. 1998. Estimation of paddy rice growth increment by using spectral reflectance signature. J. of the Korean Soc. of Remote Sensing. 14:83-94.
  10. Hussain, F., K.F. Bronson, Yadvinder-Singh, Bijay-Singh, and S. Peng. 2000. Use chlorophyll meter sufficiency indices for nitrogen management of irrigated rice in Asia. Agron. J. 92:875-879.
  11. Jordan, C.F., 1969. Derivation of leaf index from quality of light on the forest floor. Ecology. 50:663-666. https://doi.org/10.2307/1936256
  12. Kim, Y.H. and S.Y. Hong. 2007. Estimation of nondestructive rice leaf nitrogen content using ground optical sensors. Korean J. Soil Sci. Fert. 40:435-441.
  13. Kim, M.H., J.C. Shin, and B.W. Lee. 2005. Applicability of vegetation index and SPAD reading to nondestructive diagnosis of rice growth and nitrogen nutrition status. Korean J. Crop Sci. 50:369-377.
  14. NIAST. 2000. Method of Soil and Plant Analysis. RDA, Suwon, Korea.
  15. NIAST. 2006. Recommendation of the amount of fertilizer for crops. RDA, Suwon, Korea.
  16. Nguyen, H.T. and B.W. Lee. 2004. Selection of the most sensitive waveband reflectance for normalized difference vegetation index calculation to predict rice crop growth and grain yield. Korean J. Crop Sci. 49:394-406.
  17. Peterson, T.A., T.M. Blackmer, D.D. Francis, and J.S. Schepers. 1993. Using a chlorophyll meter to improve N management. Nebguide G93-1171A. Coop. Ext. Serv., Univ. of Nebraska, Lincoln.
  18. Scharf, P.C., J.P. Schmidt, N.R. Kitchen, K.A. Sudduth, S.Y. Hong, J.A. Lory, and J.G. Davis. 2002. remote sensing for nitrogen management. J. Soil Water Conserv. 57: 518-524.
  19. Shanahan, J.F., J.S. Schepers, D.D. Francis, G.E. Varvel, W.W. Wilhelm, J.M. Tringe, M.K. Schlemmer, and D.J. Major. 2001. Use of remote-sensing imagery to estimate corn grain yield. Agron. J. 93:583-589. https://doi.org/10.2134/agronj2001.933583x
  20. Thomas, J.R. and H.W. Gausman. 1977. Leaf reflectance vs. leaf chlorophyll and carotenoid concentrations for eight crops. Agron. J. 69:799-802. https://doi.org/10.2134/agronj1977.00021962006900050017x
  21. Tucker, C.J. 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 8:127-150. https://doi.org/10.1016/0034-4257(79)90013-0
  22. Varvel, G.E., J.S. Schepers, and D.D. Francis. 1997. Ability for in-season correction of nitrogen deficiency in corn using chlorophyll meters. Soil Sci. Soc. Am. J. 61:1233-1239. https://doi.org/10.2136/sssaj1997.03615995006100040032x
  23. Yang, W.H., S. Peng, J. Huang, A.L. Sanico, R.J. Buresh, and C. Witt. 2003. Using leaf color charts to estimate leaf nitrogen status of rice. Agron. J. 95:212-217.
  24. Yang, Y.K. and L.D. Miller. 1985. Correlations of rice grain yields to radiometric estimates of canopy biomass as a function of growth stage. J. of Korean Soc. of Remote Sensing. 1:63-87.
  25. Xue, L., W. Cao, W. Luo, T. Dai, and Y. Zhu. 2004. Monitoring leaf nitrogen status in rice with canopy spectral reflectance. Agron. J. 96:135-142. https://doi.org/10.2134/agronj2004.0135
  26. 박광호 외 27명. 1993. 알기 쉬운 벼 재배기술. p 68. 향문사. 서울.