Synthesis and Characterization of Layered Copper Hydroxides in Highly Concentrated Solution

고농도 용액에서 Layered Copper Hydroxides의 합성 및 특성

  • Nam, Dae-Hyean (Kyeongsangbuk-do Agricultural Technology Administration) ;
  • Choi, Choong-Lyeal (College of Agriculture and Life Science, Kyungpook National University) ;
  • Kim, Kwang-Seop (College of Agriculture and Life Science, Kyungpook National University) ;
  • Seo, Young-Jin (Kyeongsangbuk-do Agricultural Technology Administration) ;
  • Park, Man (College of Agriculture and Life Science, Kyungpook National University)
  • 남대현 (경상북도농업기술원) ;
  • 최충렬 (경북대학교 응용생명과학부) ;
  • 김광섭 (경북대학교 응용생명과학부) ;
  • 서영진 (경상북도농업기술원) ;
  • 박만 (경북대학교 응용생명과학부)
  • Received : 2010.11.03
  • Accepted : 2010.11.30
  • Published : 2010.12.31

Abstract

Layered copper hydroxides [LCHs, $Cu_2(OH)_3{\cdot}NO_3$] has the agricultural potentials as a fungicide because of its high crystallinity, excellent anion exchange capacity, and its regular layered particle size. The study, for the first time, has synthesized LCHs in highly concentrated solution and evaluated its physicochemical properties including the crystallinity and suspension stability. Optimal synthetic condition of LCHs was determined by crystallinity and stability of suspension as follow; 1) concentrations of $Cu(NO_3)_2$ and NaOH solutions were 3.0 M respectively, 2) reaction temperature and solution pH were $25^{\circ}C$ and 6.0, respectively, and 3) aging time after reaction was 2hr. Crystallinity of LCHs enhanced with increase in pH up to 9.0. Whereas, stability of suspension was decrease by increase in crystal size. Especially, increase in reaction temperature decreased stability of suspension. XRD patterns and SEM images exhibited that LCHs had regular layered particle size with 0.2~0.8 ${\mu}m$ and high crystallinity in optimal synthetic condition. The particle size was increased with increase in reaction temperature and pH. These results showed that LCHs synthesized in highly concentrated solution exhibited high stability of suspension as well as high crystallinity suitable to their potential as a fungicide.

LCHs는 높은 구리함량 뿐만 아니라 고결정도, 음이온교환능력 및 규칙적인 층상 구조 등을 가지고 있어 살균제로 활용가능성이 높다. 본 연구에서는 최초로 고농에서 LCHs를 합성하였으며, 다양한 반응인자에 따른 결정학적 및 물리적 특성을 규명하여 최적조건을 설정하였다. $Cu(NO_3)_2$ 용액에 NaOH 용액을 첨가하여 합성된 LCHs의 결정성은 후숙시간에 따라 약간 증가하였으나, 0.5시간 이후에는 거의 변화가 없었다. 반응온도에 따른 LCHs의 XRD 피크의 강도 및 패턴은 매우 유사하였으나, LCHs 현탁액의 안정성은 반응온도가 증가할수록 감소하는 경향을 나타내었다. LCHs의 결정성은 반응용액의 pH가 높아질수록 증가하였으나, pH 9.0 이상에서는 오히려 감소하는 경향을 나타내었다. 또한, 반응용액의 pH에 따라 LCHs 현탁액의 색상과 안정성이 다양하게 변화되었다. $Cu(NO_3)_2$ 농도가 증가할수록 반응용액의 점성이 증가되었으며, LCHs의 결정성은 상대적으로 낮아졌다. NaOH 용액 5.0 M에서 합성된 LCHs의 결정성은 뚜렷하게 감소하였으나, 현탁액의 안정성은 NaOH 농도가 높아질수록 증가하였다. 그러므로 LCHs의 최적 합성조건은 후숙 2시간, 반응온도 $25^{\circ}C$, 반응용액의 pH 6.0, $Cu(NO_3)_2$ 및 NaOH 용액의 농도는 3.0 M 이었다. 최적 반응조건에서 합성된 LCHs는 골격구조를 형성하는 OH, 층간의 $H_2O$$NO_3$로부터 기인하는 흡수 band가 FT-IR 분석에서 뚜렷하게 나타났다. LCHs의 탈수 및 결정구조의 파괴는 $206{\sim}246^{\circ}C$의 매우 좁은 온도범위에서 발생하였으며, 무게감량이 31.8%로서 이론적인 값인 33.6%와 비슷하게 나타났다. $25^{\circ}C$에서 합성된 LCHs는 0.2~0.8 ${\mu}m$ 크기의 plate 형태를 나타내었으나, 반응온도 및 반응용액의 pH가 증가할수록 입자 크기가 증가할 뿐만 아니라 그들의 입자모양도 변화되었다. 무기 구리제의 병원균에 대한 작용기작은 식물체 표면에 처리된 구리제가 건조 후 엷은 막을 형성하고, 공기 중의 이산화탄소나 탄산을 함유한 빗물, 이슬, 식물체 또는 미생물의 분비물에 의해 가용성의 구리염으로 변화되어 방출된 구리이온이 병원균과 접촉하여 효과를 발현한다. 따라서 작물보호제 처리 시 식물체 표면 흡착이 증가할수록 방제효율은 증가되며, 일반적으로 입자의 크기가 작을수록 식물표면 흡착은 증가한다. 그러므로 본 연구에서 합성된 HDCS는 합성공정이 간단하며, 고농도에서도 합성이 가능할 뿐만 아니라 입자크기가 작고 현탁액의 안정성이 높기 때문에 구리 살균제로서의 활용가능성이 높은 것으로 판단되었다.

Keywords

References

  1. Arizaga, G.G.C., K.G. Satyanarayana, and F. Wypych. 2007. Layered hydroxide salts: Synthesis, properties and potential applications, Solid State Ionics. 178:1143-1162. https://doi.org/10.1016/j.ssi.2007.04.016
  2. Biswicka, T., W. Jones, A. Pacuła, and E. Serwicka. 2006. Synthesis, characterisation and anion exchange properties of copper, magnesium, zinc and nickel hydroxy nitrates. J. Solid State Chem. 179:49-55. https://doi.org/10.1016/j.jssc.2005.09.040
  3. Fujita W., K. Awaga, and T. Yokoyama. 1999. Controllable magnetic properties of layered copper hydroxides, $Cu_{2}(OH)_{3}$(X = carboxylates). Appl. Clay Sci. 15:281-303. https://doi.org/10.1016/S0169-1317(99)00021-6
  4. Ghotbi, M.Y. 2009. Synthesis, modification and characterization of layered hydroxides and magnetitie and their nanohybrids with D-gluconate and gallate anions. Ph.D. Thesis, University Putra Malaysia, Malaysia.
  5. He, J., M. Wei, B. Li, Y. Kang, D.G. Evans, and X. Duan. 2005. Preparation of Layered Double Hydroxides. Struct. Bond. 119:89-119.
  6. Henrist, C., K. Traina, C. Hubert, G. Toussaint, A. Rulmont, and R. Cloots. 2003. Study of the morphology of copper hydroxynitrate nanoplatelets obtained by controlled double jet precipitation and urea hydrolysis. J. Cryst. Growth 254:176-187. https://doi.org/10.1016/S0022-0248(03)01145-X
  7. Hyun, J.W., S.W. Ko, D.H. Kim, S.G. Han, K.S. Kim, H.M. Kwon, and H.C. Lim. 2005. Effect usage of copper fungicides for environment-friendly control of citrus diseases, Res. Plant Dis. 11:115-121. https://doi.org/10.5423/RPD.2005.11.2.115
  8. Manners, J.G. 1993. Principles of plant pathology (2nd ed).The press Syndicate of the University of Cambridge, New York, USA.
  9. McCallan, S.E.A. 1949. The nature of the fungicidal action of copper and sulfur. Bot. Rev. 9:629-643.
  10. McGrath, M.T. 2009. Fungicides and other chemical approaches for use in plant disease control. Encyclopedia of Microbiology (3rd edition). 412-421.
  11. Newman S.P. and W. Jones. 1999. Comparative study of some layered hydroxide Salts containing exchangeable interlayer anions. J. Solid State Chem. 148:26-40. https://doi.org/10.1006/jssc.1999.8330
  12. Nishimori, A., E.A. Schmitt, D.N. Hendrickson, and M. Sorai. 1994. Calorimetric study of thermochromic complexes. 1. Heat capacity and phase transition of bis (N, N-diethylethylenediamine)-copper(II) tetrafluoroborate. J. Phys. Chem. Solids 37:327-340.
  13. Pereira, D.C., D.L.A. de Faria, and V.R.L. Constantino. 2006. $Cu^{II}$ Hydroxy Salts: Characterization of Layered Compounds by Vibrational Spectroscopy. J. Braz. Chem. Soc. 17:1651-1657. https://doi.org/10.1590/S0103-50532006000800024
  14. Ryu, S.K., W.K. Lee, and S.J. Park. 2004. Thermal decomposition of hydrated copper nitrate $[Cu(NO_3)_2{\cdot}3H_2O]$ on Activated Carbon Fibers. Carbon Science. 5:180-185.
  15. Timmer, L.W. and S.E. Zitko. 1996. Evaluation of copper fungicides and rate of metallic copper for control of melanose on grapefruit in Florid. Plant Dis. 80:166-169. https://doi.org/10.1094/PD-80-0166
  16. Wang, X.B. and L.N. Huang. 2009, A novel one-step method to synthesize copper nitrate hydroxide nanorings, Trans. Nonferrous Met. Soc. China. 19:s480-s484. https://doi.org/10.1016/S1003-6326(10)60093-3
  17. Wanga, R.T., X.P. Lianga, Y. Penga, X.W. Fana, and J.X. Li. 2009. Effect of the reaction temperature on nanocrystallites MgAl2O4 spinel ceramic precursor. J. Ceram. Process. Res. 10:780-782.
  18. Xiao, X.F. and R.F. Liu. 2006. Effect of suspension stability on electrophoretion deposition of hydroxyapatite coatings. Materials Letters. 60:2627-2632. https://doi.org/10.1016/j.matlet.2006.01.048
  19. Xu, Z.P., G.S. Stevenson, C.Q. Lu, G.Q. Lu, P.F. Bartlett, and P.P. Gray. 2006. Stable Suspension of Layered Double Hydroxide Nanoparticles in Aqueous Solution. J. Am. Chem. Soc. 128:36-37. https://doi.org/10.1021/ja056652a