포장용수량과 포화 반죽 토양용액의 전기전도도 비교

The Comparison of Electrical Conductivity for Soil Solutions Extracted in Field Capacity and Saturation-Paste

  • 이예진 (농촌진흥청 국립농업과학원 토양비료관리과) ;
  • 이종식 (농촌진흥청 국립농업과학원 토양비료관리과) ;
  • 양재의 (강원대학교 바이오자원환경학과)
  • Lee, Ye-Jin (Soil & Fertilizer Management Division, National Academy of Agricultural Science, RDA) ;
  • Lee, Jong-Sik (Soil & Fertilizer Management Division, National Academy of Agricultural Science, RDA) ;
  • Yang, Jae-E. (Department of Biological Environment, Kangwon National University)
  • 투고 : 2010.09.29
  • 심사 : 2010.11.11
  • 발행 : 2010.12.31

초록

본 실험은 토양의 염류도 평가를 위한 전기전도도 측정시 기준으로 적용되는 포화 전기전도도가 이상적인 측정방법인 포장용수량의 전기전도도를 대표할 수 있는지 평가하기 위하여 수행되었다. 염류집적 시설재배지 22점과 간척지 토양 18점을 채취하여 포화반죽과 포장용수량의 토양용액을 추출하고, 주요 구성 양이온, 음이온과 전기전도도를 비교하였다. 시설재배지 토양의 양이온, 음이온과 간척지 토양에서 ${NO_3}^-$${PO_4}^{3-}$를 제외한 나머지 양이온, 음이온 모두 높은 상관을 나타내었고, 포장용수량과 포화 전기전도도 또한 높은 상관관계를 보였다. 포화 전기전도도와 불포화 조건인 포장용수량 전기전도도를 비교하였을 때 시설재배지 토양에서는 기울기가 0.923, 간척지 토양에서는 1.009로 거의 차이가 없었으며, 통계 결과 유의성이 인정되지 않아 포화반죽으로 전기전도도를 평가하는 것이 합리적인 것으로 판단되었다. 시설재배지와 간척지 토양을 sand, silt, clay 각각을 기준으로 비교한 결과 sand 함량과 포장용수량, 포화 전기전도도 비율이 비례하는 것으로 나타났다. 시설재배지 토양에서 sand 50% 이하에서는 0.811, Sand 50% 이상에서는 1.179, 간척지 토양은 sand 50% 이하에서 0.848, Sand 50% 이상에서 1.087배 차이나는 것으로 나타났으며, sand 함량이 많을수록 포장용수량과 포화 수분퍼센트의 차이가 크게 나타나 토성에 의한 수분 보유력이 관련된 것으로 판단되었다.

Estimating the electrical conductivity of the saturation-paste (SP) is a common method to assess soil salinity. To assess soil salinity realistically, it is important to extract soil solution under field capacity. However, few studies on salinity assessment have been conducted for soil solution extracted under field capacity (-33 kPa; FC) moisture condition due to difficulty in soil solution extraction. This study was conducted to evaluate whether saturation-paste can represent field condition. Soil solutions were extracted from 22 soils in the plastic film house (PFH) and 18 soils in the reclaimed land (RL) at saturation and field capacity moisture conditions. Those were analyzed for pH, EC, cations ($K^+$, $Ca^{2+}$, $Mg^{2+}$, $Na^+$) and anions ($Cl^-$, ${NO_3}^-$, ${PO_4}^{3-}$, ${SO_4}^{2-}$). Both cations and anions of soil solution extracted from FC showed high correlations with ions extracted from SP in the PFH and the RL, except for ${NO_3}^-$, ${PO_4}^{3-}$ in the RL. Results of the t-test, the ECe and $EC_{FC}$ were not significant at significance level 0.05. The slopes of the equations between $EC_{FC}$ and ECe at more than sand 50% soils were higher than less than sand 50% soils, and differences of saturation percentage between SP and FC showed larger as increasing sand percentage. EC was related to soil water retention by soil texture. To determine the EC, soil texture and other soil properties which effect the soil moisture should be considered.

키워드

참고문헌

  1. Brady, N. and W. Ray. 1999. The nature and properties of soils. Prentice Hall Upper Saddle River, NJ. p.204.
  2. Connie, K.K. and M.J. Dudas. 1994. Comparison of immiscibly displaced soil solutions and saturated paste extracts from saline soils. Can. J. Soil Sci. 74:409-420. https://doi.org/10.4141/cjss94-054
  3. Dasberg, S. and A. Nadler. 1988. Soil salinity measurements. Soil Use and Management. 4:127-132. https://doi.org/10.1111/j.1475-2743.1988.tb00749.x
  4. Dyer, C., P. Kopittke, A. Sheldon, and N. Menzies. 2008. Influence of soil moisture content on soil solution composition. Soil Sci. Soc. Am. J. 72:355. https://doi.org/10.2136/sssaj2007.0124
  5. Gillman, G.P. 1976. A centrifuge method for obtaining soil solution. Div. Rep. No. 16. CSIRO, Div. of Soils, Townsville, Queensland, Australia.
  6. Hansen, E.A. and A.R. Harris. 1975. Validity of soil water samples collected with porous ceramic cups. Soil Sci. Soc. Am. Proc. 39:528-536. https://doi.org/10.2136/sssaj1975.03615995003900030041x
  7. Khasawneh, F.E. and F. Adams. 1967. Effect of dilution on calcium and potassium contents of soil solutions. Soil Sci. Soc. Am. Proc. 31:172-176. https://doi.org/10.2136/sssaj1967.03615995003100020010x
  8. Lee, I.B., H.M. Ro, J.H. Lim, and M.S. Yiem. 2000. Estimating saturation-paste electrical conductivities of rose-cultivated soils from their diluted soil extracts. Korea J. of Soil Sci. Fert. 33:398-404.
  9. Lee, S.H., B.D. Hong, Y. An, and H.M. Ro. 2003. Estimation of conversion factors for electrical conductivities measured by saturation-paste and 1:5 water extraction. Korea J. of Soil Sci. Fert. 36:193-199.
  10. Menzies, N.W. and L.C. Bell. 1988. Evaluation of the influence of sample preparation and extraction technique on soil solution composition. Aust. J. Soil Res 26:451-464. https://doi.org/10.1071/SR9880451
  11. Mubarak, A. and R.A. Olsen. 1976. Immiscible displacement of th soil solution by centrifugaton. Soil Sci. Soc. Am. J. 40:329-331.
  12. NIAST. 1988. Methods of soil chemical analysis. National Institute of Agricultural Science and Technology, RDA, Suwon, Korea.
  13. Phillips, I.R. and W.J. Bond. 1989. Extraction procedure for determining solution and exchangeable ions on the same soil sample. Soil Sci. Soc. Am. J. 53:1294-1297. https://doi.org/10.2136/sssaj1989.03615995005300040050x
  14. Reitemeier, R.F. 1944. Reliability of the pressure membrane method for extraction of soil solution. Soil Science. 61:195-215.
  15. Rhoades, J.D. 1996. Salinity: Electrical conductivity and total dissolved solids. Methods of soil analysis. Part 3. Chemical methods. Am. Soil Sci. Soc. and Am. Agron. Soc., SSSA Book Ser. No. 5, Madison, WI.
  16. Scott, H.D. and J.F. Lutz. 1971. Release of herbicides from clay minerals as a function of water content: I. Kaolinite. Soil Sci. Soc. Am. Proc. 35:374-379. https://doi.org/10.2136/sssaj1971.03615995003500030017x
  17. So, H.B., N.W. Menzies, R. Bigwood, and P.M. Kopittke, 2006. Examination into the accuracy of exchangeable cation measurement in saline soils. Commun. Soil Sci. Plant Anal. 37:1819-1832. https://doi.org/10.1080/00103620600762927
  18. Soil Survey Laboratory Staff. 1992. Soil Survey Laboratory Methods Manual. USDA-SCS Soil Survey Investment Report No. 42, Version 2. U.S. Government Printing Office, Washington, DC
  19. Suarez, D.L. 1987. Prediction of pH errors in soil water extractors due to degassing. Soil Sci. Soc. Am. J. 51:64 -68. https://doi.org/10.2136/sssaj1987.03615995005100010012x
  20. Sumner, M.E. and W.P. Miller. 1996. Cation exchange capacity and exchange coefficients. Part 3. Chemical methods. Am. Soil Sci. Soc. and Am. Agron. Soc., SSSA Book Ser. No. 5, Madison, WI.
  21. U.S. Salinity Laboratory Staff. 1954. Diagnosis and improvement of saline and alkali soils. L.A. Richards (ed.) USDA Handb. 60. U.S.Gov. Print. Office, Washington, DC.
  22. Whelan, B.R. and N.J. Barrow. 1980. A study of a method for displacing soil solution by centrifuging with an immiscible liquid. J. Environ. Qual. 9:315-319.