DOI QR코드

DOI QR Code

Keggin형 헤테로폴리산에 의한 과당의 5-하이드록시메틸퍼퓨랄로의 전환을 위한 탈수반응

Dehydration Reaction of Fructose to 5-Hydroxymethylfurfural over Various Keggin-type Heteropolyacids

  • 백자연 (서울대학교 화학공정신기술연구소, 화학생물공학부 에너지환경화학융합기술) ;
  • 윤형진 (서울대학교 화학공정신기술연구소, 화학생물공학부 에너지환경화학융합기술) ;
  • 김남동 (서울대학교 화학공정신기술연구소, 화학생물공학부 에너지환경화학융합기술) ;
  • 최영보 (서울대학교 화학공정신기술연구소, 화학생물공학부 에너지환경화학융합기술) ;
  • 이종협 (서울대학교 화학공정신기술연구소, 화학생물공학부 에너지환경화학융합기술)
  • Baek, Ja-Yeon (World Class University Program of Chemical Convergence for Energy & Environment (C2E2), School of Chemical and Biological Engineering, Seoul National University) ;
  • Yun, Hyeong-Jin (World Class University Program of Chemical Convergence for Energy & Environment (C2E2), School of Chemical and Biological Engineering, Seoul National University) ;
  • Kim, Nam-Dong (World Class University Program of Chemical Convergence for Energy & Environment (C2E2), School of Chemical and Biological Engineering, Seoul National University) ;
  • Choi, Young-Bo (World Class University Program of Chemical Convergence for Energy & Environment (C2E2), School of Chemical and Biological Engineering, Seoul National University) ;
  • Yi, Jong-Heop (World Class University Program of Chemical Convergence for Energy & Environment (C2E2), School of Chemical and Biological Engineering, Seoul National University)
  • 투고 : 2010.07.21
  • 심사 : 2010.09.20
  • 발행 : 2010.09.30

초록

과당(fructose)로부터 간단한 공정을 통하여 바이오디젤보다 우수한 청정에너지 연료로 알려진 5-하이드록시메틸퍼퓨랄(HMF)을 제조하는 청정공정을 개발하였다. 이 연구에서는 중심원소와 배위원소가 치환된 네 종류의 헤테로폴리산 $H_nXM_{12}O_{40}$ (중심원소 X = P, Si, 배위원소 M = W, Mo.)을 과당으로부터 HMF로 전환하는 탈수반응에 적용하고, 그 반응활성을 비교하였다. 헤테로폴리산의 산 세기는 중심원소가 P, 배위원소가 W일 때 더 높았으며 산 점의 수는 이와 반대되는 경향을 보였다. 과당의 HMF로의 탈수반응은 헤테로폴리산의 산 특성과 음이온의 연성(softness)과 밀접한 관련이 있으며, 촉매 활성점과 전환율이 상쇄 작용하여 네 종류의 헤테로폴리산 촉매는 서로 비슷한 활성을 보였다. 또한 반응에 사용된 헤테로폴리산을 반응온도보다 높은 $200^{\circ}C$에서 열처리한 후에도 그 결정구조가 유지되는 것을 확인하였으며, 이를 통하여 헤테로폴리산의 반응활성이 안정적으로 유지됨을 확인할 수 있었다.

Four Keggin-type heteropolyacids, $H_nXM_{12}O_{40}$(X = P and Si, M = W and Mo) that were substituted with heteroatom and polyatom were applied to the dehydration reaction of fructose to 5-hydroxymethylfurfural (HMF). The results showed that the acid became stronger when the heteroatom and polyatom were substituted with P and W than the cases of Si and Mo, respectively. However, the amount of acidic sites increased with the decrease in the acid strength, resulting in the change of the catalytic activity of heteropolyacids in the dehydration reaction. The experimental results revealed that four different heteropolyacids produced similar amounts of HMF via the dehydration reaction of fructose due to the counterbalancing effect between the amount of active sites, which is related to the catalytic activity of heteropolyacids, and the softness of polyanion. In addition, it was observed that the prepared heteropolyacids showed good structural stability after heat treatment at $200^{\circ}C$.

키워드

참고문헌

  1. Penner, S. S., "Steps Toward the Hydrogen Economy," Energy, 31, 33-43 (2006). https://doi.org/10.1016/j.energy.2004.04.060
  2. Graboski, M. S., and McCormick, R. L., "Combustion of Fat and Vegetables Oil Derived Diesel Engines," Prog. Energy Combust. Sci., 24, 125-164 (1998). https://doi.org/10.1016/S0360-1285(97)00034-8
  3. Farrell, A. E., Plevin, R. J., Turner, B. T., Jones, A. D., O'Hare, M., and Kammen, D. M., "Ethanol Can Contribute to Energy and Environmental Goals," Science, 311, 506-508 (2006). https://doi.org/10.1126/science.1121416
  4. Demirbas, A., "Biodiesel for Future Transportation Energy Needs," Energy Sources, Part A, 32, 1490-1508 (2010). https://doi.org/10.1080/15567030903078335
  5. Roman-Leshkov, Y., Chheda, J. N., and Dumesic, J. A., "Phase Modifiers Promote Efficient Production of Hydroxymethylfurfural from Fructose," Science, 312, 1933-1937 (2006). https://doi.org/10.1126/science.1126337
  6. Roman-Leshkov, Y., Barrett, C. J., Liu, Z. Y., and Dumesic, J. A., "Production of Dimethylfuran for Liquid Fuels from Biomass-Derived Carbohydrates," Nature, 447, 982-986 (2007). https://doi.org/10.1038/nature05923
  7. Qi, X., Watanabe, M., Aida, T. M., and Smith, R. L., Jr., "Catalytic Dehydration of Fructose into 5-Hydroxymethylfurfural by Ion-exchange Resin in Mixed-Aqueous System by Microwave Heating," Green Chem., 10, 799-805 (2008). https://doi.org/10.1039/b801641k
  8. Musau, R. M., and Munavu, R. M., "The Preparation of 5-Hydroxymethyl-2-Furaldehyde (HMF) from D-Fructose in the Presence of DMSO," Biomass, 13, 67-74 (1987). https://doi.org/10.1016/0144-4565(87)90072-2
  9. Seri, K., Inoue, Y., and Ishida, H., "Catalytic Activity of Lantanide (III) Ions for the Dehydration of Hexose to 5-Hydroxymethyl-2-Furaldehyde in Water," Bull. Chem. Soc. Jpn., 74, 1145-1150 (2001). https://doi.org/10.1246/bcsj.74.1145
  10. Zhao, H., Holladay, J. E., Brown, H., and Zhang, Z. C., "Metal Chlorides in Ionic Liquid Solvents Convert Sugars to 5-Hydroxymethylfurfural," Science, 316, 1597-1600 (2007). https://doi.org/10.1126/science.1141199
  11. Jow, J., Rorrer, G. L., and Hawley, M. C., "Dehydration of D-Fructose to Levulinic Acid over LZY Zeolite Catalyst," Biomass, 14, 185-194 (1987). https://doi.org/10.1016/0144-4565(87)90046-1
  12. Moreau. C., Durand. R., Razigade. S., Duhamet. J., Faugeras. P., Rivalier. P., Ros. P., and Avignon. G., "Dehydration of Fructose to 5-Hydroxymethylfurfural over H-Morneties," Appl. Catal. A: Gen., 145, 211-224 (1996). https://doi.org/10.1016/0926-860X(96)00136-6
  13. Qi. X., Watanabe. M., Aida. T. M., and Smith, R. L., Jr., "Selective Conversion of D-Fructose to 5-Hydroxymethylfurfural by Ion-Exchange Resin in Acetone/Dimethyl Sulfoxide Solvent Mixtures," Ind. Eng. Chem. Res., 47, 9234-9239 (2008). https://doi.org/10.1021/ie801016s
  14. Asghari. F. S., and Yoshida. H., "Dehydration of Fructose to 5-Hydroxymethylfurfural in Sub-Critical Water over Heterogeneous Zirconium Phosphate Catalysts," Carbohydr. Res., 341, 2379-2387 (2006). https://doi.org/10.1016/j.carres.2006.06.025
  15. Carlini. C., Patrono. P., Galletti. A. M. R., and Sbrana. G., "Heterogeneous Catalysts Based on Vanadyl Phosphate for Fructose Dehydration to 5-Hydroxymethyl-2-Furaldehyde," Appl. Catal. A: Gen., 275, 111-118 (2004). https://doi.org/10.1016/j.apcata.2004.07.026
  16. Armaroli. T., Busca. G., Carlini. C., Giuttari. M., Galletti. A. M. R., and Sbrana. G., "Acid Sites Characterization of Niobium Phosphate Catalysts and Their Activity in Fructose Dehydration to 5-Hydroxymetyl-2-Furaldehyde," J. Mol. Catal. A., 151, 233-243 (2000). https://doi.org/10.1016/S1381-1169(99)00248-4
  17. Yan, H., Yang, Y., Tong, D., Xiang, X., and Hu, C., "Catalytic Conversion of Glucose to 5-Hydroxymethylfurfural over $SO_{4}\,^{2-}/ZrO_{2}$ and $SO_{4}\,^{2-}/ZrO_{2}-Al_{2}O_{3}Solid$ Acid Catalysts," Catal. Commun., 10, 1558-1563 (2009). https://doi.org/10.1016/j.catcom.2009.04.020
  18. Qi. X., Watanabe. M., Aida. T. M., and Smith, R. L., Jr., "Sulfated Zirconia as a Solid Acid Catalysts for the Dehydration of Fructose to 5-Hydroxymethylfurfural," Catal. Commun., 10, 1771-1775 (2009). https://doi.org/10.1016/j.catcom.2009.05.029
  19. Shimizu, K. I., Uozumi, R., and Satsuma, A., "Enhanced Production of Hydroxymethylfurfural from Fructose with Solid Acid Catalysts by Simple Water Removal Methods," Catal. Commun., 10, 1849-1853 (2009). https://doi.org/10.1016/j.catcom.2009.06.012
  20. Park, G. I., Barteau, M. A., Jung, J. C., and Song, I. K., "STM Studies of Keggin-Type and Wells-Dawson-Type Heteropolyacid Catalysts," Korean Chem. Eng. Res., 47(2), 163-168 (2009).
  21. Kozhevnikov, I. V., "Catalysis by Heteropoly Acids and Multicomponent Polyoxometalates in Liquid-Phase Reactions," Chem. Rev. 98, 171- 198 (1998). https://doi.org/10.1021/cr960400y
  22. Timofeeva, M. N., "Acid Catalysis by Heteropoly Acids," Appl. Catal. A: Gen., 256, 19-35 (2003). https://doi.org/10.1016/S0926-860X(03)00386-7
  23. Dias, A. S., Pillinger, M., and Valenete, A. A., "Liquid Phase Dehydration of D-Xylose in the Presence of Keggin-Type Heteropolyacids," Appl. Catal. A: Gen., 285, 126-131 (2005). https://doi.org/10.1016/j.apcata.2005.02.016
  24. Lee, W. Y., and Song, I. K., "Design of Heteropolyacid- Imbedded Polymer Films and Catalytic Membranes," HWAHAK KONGHAK, 38(3), 317-329 (2000).
  25. Misono, M., "Heterogeneous Catalysis by Heteropoly Compounds of Molybdenum and Tungsten," Catal. Rev. Sci. Eng., 29(2&3), 269-321 (1987). https://doi.org/10.1080/01614948708078072
  26. Kim, H., Kim, P., Lee, K.Y., Yeom, S. H., Yi, J., and Song, I. K., "Preparation and Characterization of Heteropolyacid/ Mesoporous Carbon Catalyst for the Vapor-Phase 2-Propanol Conversion Reaction," Catal. Today, 111, 361-365 (2006). https://doi.org/10.1016/j.cattod.2005.10.048
  27. Kim, H., Youn, M. H., Jung, J.C., and Song, I. K., "UV-Visible Absorption Edge Energy of Heteropolyacids (HPAs) as a Probe of Catalytic Performance of HPAs in the Oxidative Dehydrogenation of Isobutyric Acid," J. Mol. Catal. A, 252, 252-255 (2006). https://doi.org/10.1016/j.molcata.2006.02.070
  28. La, K. W., Jung, J. C., Kim, H., Baeck, S., and Song, I. K., "Effect of Acid-Base Properties of $H_{3}PW_{12}O_{40}/Ce_{x}Ti_{1-x}O_{2}$ Catalysts on the Direct Synthesis of Dimethyl Carbonate from Methanol and Carbon Dioxide: A TPD Study of $H_{3}PW_{12}O_{40}/Ce_{x}Ti_{1-x}O_{2}$ Catalysts," J. Mol. Catal. A, 269, 41-45 (2007). https://doi.org/10.1016/j.molcata.2007.01.006
  29. Kim, H., Jung, J. C., and Song, I. K., "Chemical Immobilization of Heteropolyacid Catalyst on Inorganic Mesoporous Material for Use as an Oxidation Catalyst," Catal. Surv. Asia., 11, 114-122 (2007). https://doi.org/10.1007/s10563-007-9025-1
  30. Lee, J., Kim, H., La, K. W., Park, D. R., Jung, J. C., Lee, S. H., and Song, I. K., "Chemical Immobilization of $H_{5}PMo_{10}V_{2}O_{40}$ ($PMo_{10}V_{2}$) Catalyst on Nitrogen-rich Macroporous Carbon (N-MC) for Use as an Oxidation Catalyst," Catal. Lett., 123, 90-95 (2008). https://doi.org/10.1007/s10562-008-9399-3
  31. Hong, U. G., Park, D. R., Park, S., Seo, J. G., Bang, Y., Hwang, S., Youn, M. H., and Song, I. K., "Preparation and Oxidation Catalysis of $H_{5}PMo_{10}V_{2}O_{40}$ Catalyst Immobilized on Nitrogen- Containing Spherical Carbon," Catal. Lett., 132, 377-382 (2009). https://doi.org/10.1007/s10562-009-0118-5
  32. Shimizu, K., Furukawa, H., Kobayashi, N., Itaya, Y., and Satsuma, A., "Effects of Brönsted and Lewis Acidities on Activity and Selectivity of Heteropolyacid-based Catalysts for Hydrolysis of Cellobiose and Cellulose," Green Chem., 11, 1627-1632 (2009). https://doi.org/10.1039/b913737h
  33. Huixiong. W., Mei. Z., Yixin. Q., Haixia. L., and Hengbo. Y., "Preparation and Characterization of Tungsten-Substituted Molybdophosphoric Acids and Catalytic Cyclodehydration of 1,4-Butanediol to Tetrahydrofuran," Chinese J. Chem. Eng., 17(2), 200-206 (2009). https://doi.org/10.1016/S1004-9541(08)60194-9
  34. Kozhevnikov, I. V., "Heteropoly Acids and Related Compounds as Catalysts for Fine Chemical Synthesis," Catal. Rev. Sci. Eng., 37, 311-352 (1995). https://doi.org/10.1080/01614949508007097
  35. Serwicka. E. M., Bruckman. K., and Haber. J., "Acid-Base Properties of $H_{3+n}PV_{n}Mo_{12-n}O_{40}$ Heteropolyacids, Pure and Supported on $K_{3}PMo_{12}O_{40}$," Appl. Catal., 73, 153-163 (1991). https://doi.org/10.1016/0166-9834(91)85133-G
  36. Antal, M. J., Mok, W. S. L. Jr., and Richards, G. N., "Mechanism of Formation of 5-(Hydroxymethyl)-2- Furaldehyde from D-Fructose and Sucrose," Carbohydr. Res., 199, 91-109 (1990). https://doi.org/10.1016/0008-6215(90)84096-D
  37. Amarasekara, A. S., Williams, L. D., and Ebede, C. C., "Mechanism of the Dehydration of D-Fructose to 5-Hydroxymethylfurfural in Dimethyl Sulfoxide at $150{^{\circ}C}$: an NMR Study," Carbohydr. Res., 343, 3021-3024 (2008). https://doi.org/10.1016/j.carres.2008.09.008
  38. Bicker, M., Kaiser, D., Ott, L., and Vogel, H., "Dehydration of D-Fructose to Hydroxymethylfurfural in Sub- and Supercritical Fluids," J. Supercrit. Fluids, 36, 118-126 (2005). https://doi.org/10.1016/j.supflu.2005.04.004
  39. Park, D. R., Lee, S. H., Lee, J., Song, S. H., Kim, H., Song, J. H., and Song, I. K., "Acid Strength of $H_{3}PW_{x}Mo_{12-x}O_{40}$ and $H_{6}P_{2}W_{x}Mo_{18-x}O_{62}$ Heteropolyacid Catalysts as a Probe of Acid Catalysis for 2-Propanol Conversion Reaction," Catal. Lett., 126, 308-312 (2008). https://doi.org/10.1007/s10562-008-9618-y
  40. Kozhevnikov, I. V., "Heteropoly Acids and Related Compounds as Catalysts for Fine Chemical Synthesis," Catal. Rev. Sci. Eng., 37, 311-352 (1995). https://doi.org/10.1080/01614949508007097
  41. ioc, U. B., Dimitrijevic, R. Z., Davidovic, M., Nedic, Z. P., Mitrovic, M. M., and Colomban, P. H., "Thermally Induced Phase Transformations of 12-Tungstophosphoric acid 29-Hydrate: Synthesis and Characterization of $PW_{8}O_{26}-Type$ Bronzes," J. Mater. Sci., 29, 3705-3718 (1994). https://doi.org/10.1007/BF00357338
  42. Black, J. B., Clayden, N. J., Gai, P. L., Scott, J. D., Serwicka, E. M., and Goodenough, J. B., "Acrolein Oxidation over 12- Molybdophosphate," J. Catal., 106, 1-15 (1987). https://doi.org/10.1016/0021-9517(87)90205-3
  43. Xue, J., Yin, H., Li, H., Zhang, D., Jiang, T., Yu, L., and Shen, Y., "Oxidation of Cyclopentene Catalyzed by Tungsten- Substituted Molybdophosphoric Acids," Korean J. Chem. Eng., 26(3), 654-659 (2009). https://doi.org/10.1007/s11814-009-0109-7
  44. Marosi, L., Platero, E. E., Cifre, J., and Arean, C. O., "Thermal Dehydration of $H_{3+x}PV_{x}M_{12-x}O_{40}\,{\cdot}\,yH_{2}O$ Keggin Type Heteropolyacids; Formation, Thermal Stability and Structure of the Anhydrous Acids $H_{3}PMo_{12}O_{40}$, of the Corresponding Anhydrides $PM_{12}O_{38.5}$ and of a Novel Trihydrate $H_{3}PW_{12}O_{40}\,{\cdot}\,3H_{2}O$," J. Mater. Chem., 10, 1949-1955 (2000). https://doi.org/10.1039/b001476l