• Title/Summary/Keyword: Keggin-type heteropolyacids

Search Result 3, Processing Time 0.019 seconds

STM Studies of Keggin-type and Wells-Dawson-type Heteropolyacid Catalysts (Keggin 형 및 Wells-Dawson 형 헤테로폴리산 촉매의 STM 연구)

  • Park, Gyo Ik;Barteau, Mark A.;Jung, Ji Chul;Song, In Kyu
    • Korean Chemical Engineering Research
    • /
    • v.47 no.2
    • /
    • pp.163-168
    • /
    • 2009
  • Negative differential resistance(NDR) behaviors of Keggin-type and Wells-Dawson-type heteropolyacids with cation, heteroatom, and polyatom substitutions were investigated by scanning tunneling microscopy. A reliable correlation between NDR peak voltage and reduction potential of heteropolyacid catalysts was established. It was found that more reducible heteropolyacid catalyst showed NDR behavior at less negative voltage, regardless of the structural difference. Thus, NDR peak voltage of heteropolyacid catalyst could be utilized as a single correlating parameter for the reduction potential of heteropolyacid catalyst.

Dehydration Reaction of Fructose to 5-Hydroxymethylfurfural over Various Keggin-type Heteropolyacids (Keggin형 헤테로폴리산에 의한 과당의 5-하이드록시메틸퍼퓨랄로의 전환을 위한 탈수반응)

  • Baek, Ja-Yeon;Yun, Hyeong-Jin;Kim, Nam-Dong;Choi, Young-Bo;Yi, Jong-Heop
    • Clean Technology
    • /
    • v.16 no.3
    • /
    • pp.220-228
    • /
    • 2010
  • Four Keggin-type heteropolyacids, $H_nXM_{12}O_{40}$(X = P and Si, M = W and Mo) that were substituted with heteroatom and polyatom were applied to the dehydration reaction of fructose to 5-hydroxymethylfurfural (HMF). The results showed that the acid became stronger when the heteroatom and polyatom were substituted with P and W than the cases of Si and Mo, respectively. However, the amount of acidic sites increased with the decrease in the acid strength, resulting in the change of the catalytic activity of heteropolyacids in the dehydration reaction. The experimental results revealed that four different heteropolyacids produced similar amounts of HMF via the dehydration reaction of fructose due to the counterbalancing effect between the amount of active sites, which is related to the catalytic activity of heteropolyacids, and the softness of polyanion. In addition, it was observed that the prepared heteropolyacids showed good structural stability after heat treatment at $200^{\circ}C$.

Antifungal Activity of Silver Salts of Keggin-Type Heteropolyacids Against Sporothrix spp.

  • Mathias, Luciana Da Silva;Almeida, Joao Carlos De Aquino;Passoni, Luis Cesar;Gossani, Cristiani Miranda David;Taveira, Gabriel Bonan;Gomes, Valdirene Moreira;Vieira-Da-Motta, Olney
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.4
    • /
    • pp.540-551
    • /
    • 2020
  • Sporotrichosis is a chronic and subacute mycosis causing epidemiological outbreaks involving sick cats and humans in southeastern Brazil. The systemic disease prevails in cats and in humans, with the symptoms restricted to the skin of immunocompetent individuals. Under these conditions, the prolonged treatment of animals and cases of recurrence justify the discovery of new treatments for sporotrichosis. This work addresses the antifungal activity of silver salts of Keggin-type heteropolyacid salts (Ag-HPA salts) such as Ag3[PW12O40], Ag6[SiW10V2O40], Ag4[SiW12O40] and Ag3[PMo12O40] and interactions with the antifungal drugs itraconazole (ITC), terbinafine (TBF) and amphotericin B (AMB) on the yeast and mycelia forms of Sporothrix spp. Sporothrix spp. yeast cells were susceptible to Ag-HPA salts at minimum inhibitory concentration (MIC) values ranging from 8 to 128 ㎍/ml. Interactions between Ag3[PW12O40] and Ag3[PMo12O40] with itraconazole and amphotericin B resulted in higher antifungal activity with a reduction in growth and melanization. Treated cells showed changes in cell membrane integrity, vacuolization, cytoplasm disorder, and membrane detachment. Promising antifungal activity for treating sporotrichosis was observed for the Ag-HPA salts Ag3[PMo12O40] and Ag3[PW12O40], which have a low cost, high yield and activity at low concentrations. However, further evaluation of in vivo tests is still required.