변온 하중하에 있는 재료의 이력거동 예측을 위한 다층 모델에 관한 연구

A Study on the Overlay Model for Description of Hysteresis Behavior of a Material under Non-isothermal Loading

  • 김상호 (세종공업(주)) ;
  • 서동훈 (울산대학교 기계자동차공학부) ;
  • 여태인 (울산대학교 기계자동차공학부)
  • Kim, Sang-Ho (Research & Development Center, Sejong Industrial Co.) ;
  • Seo, Dong-Hun (School of Mechanical & Automotive Engineering, University of Ulsan) ;
  • Yeo, Tae-In (School of Mechanical & Automotive Engineering, University of Ulsan)
  • 투고 : 2009.09.02
  • 심사 : 2009.11.04
  • 발행 : 2010.05.01

초록

The present work focuses on the characterization of material parameters of the Overlay(multilinear hardening) model for analyzing the non-isothermal cyclic deformation. In the previous study, all the parameters were especially based on the Overlay theories, and a simple method was suggested to find out the best material parameters for the isothermal cyclic deformation analysis. Based on the previous research this paper f dther improves the isothermal parameters and suggests how to apply the isothermal parameters to the non-isothermal conditions especially for the description of TMF(Thermo-Mechanical Fatigue) hysteresis behavior. The parameters are determined and calibrated using 400 series stainless steel test data in the reference papers. For the implementation into ABAQUS, a user subroutine is developed by means of ABAQUS/UMAT. The finite element results show good agreement with test for the case of uniaxial non-isothermal cyclic loading, signifying the proposed method can be used in the TMF analysis of the converter-inserted heavy duty muffler system and the stainless steel exhaust-manifold system which are to be done in our future research.

키워드

참고문헌

  1. J. L. Chaboche, "Time-independent Constitutive Theories for Cyclic Plasticity," Int. J. Plasticity Vol.2, No.2, pp.149-188, 1986. https://doi.org/10.1016/0749-6419(86)90010-0
  2. S. S. Yoon, S. G. Hong and S. B. Lee, "Phenomeno-logical Description of Cyclic Deformation Using the Overlay Model," Material Science and Engineering, A364, pp.17-26, 2006.
  3. A. K. Miller, Unified Constitutive Equations for Creep and Plasticity, Elsevier Applied Science, London, 1987.
  4. A. S. Krausz and K. Krausz, Unified Constitutive Laws of Plastic Deformation, Academic Press, 1996.
  5. K. Schiffner, "Overlay Models for Structural Analysis under Cyclic Loading," Computer & Structures, Vol.56, pp.321-328, 1995. https://doi.org/10.1016/0045-7949(95)00025-C
  6. J. F. Besseling, "A Theory of Elastic, Plastic, and Creep Deformations of an Initially Isotropic Material Showing Anisotropic Strain Hardening, Creep Recovery, and Secondary Creep," Journal of Applied Mechanics, pp.529- 536, 1958.
  7. M. Orits and J. C. Simo, "An Analysis of a New Class of Integration Algorithms for Elastoplastic Constitutive Equations," Int. J. Num. Meth. Engng., Vol.23, p.353, 1986. https://doi.org/10.1002/nme.1620230303
  8. K. Hornberger and H. Stamm, "An Implicit Integration Algorithms with a Projection Method for viscoplastic Constitutive Equation," Int. J. Num. Meth. Engng., Vol.28, p.2397, 1989. https://doi.org/10.1002/nme.1620281013
  9. J. L. Chaboche and G. Cailletaud, "Integration Methods for Complex Plastic Constitutive Equations," Comp. Meth. Appl. Mech. Engng., p. 125, 1996.
  10. D. R. J. Owen, A. Prakash and O. C. Zienkie wicz, "Finite Element Analysis of Non-linear Composite Materials by Use of Overlay Systems," Computer & Structures, Vol.4, pp.1251- 1267, 1974. https://doi.org/10.1016/0045-7949(74)90035-2
  11. S. S. Yoon, S. B. Lee and J. B. Kim, "Generalization of Integration Methods for Complex Inelastic Constitutive Equations with State Variables," Transection of the KSME (A), Vol.24, No.5, pp.1075-1083, 2000.
  12. S. S. Yoon and S. B. Lee, "A Semi-Implicit Integration for Rate-Dependent Plasticity with Non-linear Kinematic Hardening," Transection of the KSME (A), Vol.27, No.9, pp.1562-1570, 2003.
  13. S. S. Yoon and S. B. Lee, "Comparison of Semi- Implicit Integration Schemes for Rate- Dependent Plasticity," Transection of the KSME (A), Vol.27, No.11, pp.1907-1916, 2003.
  14. L. G. Zhao, J. Tong, B. Vermeulen and J. Byrne, "On the Uniaxial Mechanical Behaviour of an Advanced Nickel Base Superalloy at High Temperature," Mechanics of Materials, Vol.33, pp.593-600, 2001. https://doi.org/10.1016/S0167-6636(01)00071-0
  15. J. Tong, Z. L. Zhan and B. Vermeulen, "Modeling of Cyclic Plasticity and Viscoplasticity of a nickel-based alloy using Chaboche Constitutive Equations," Int. Journal of Fatigue, Vol.26, pp.829-837, 2004. https://doi.org/10.1016/j.ijfatigue.2004.01.002
  16. S. S. Yoon, S. G. Hong, S. B. Lee and B. S. Kim, "Low Cycle Fatigue Testing of 429EM Stainless Steel Pipe," Int. Journal of Fatigue, Vol.25, pp.1301-1307, 2003. https://doi.org/10.1016/j.ijfatigue.2003.08.015
  17. ABAQUS, User & Theory Manual Ver.6.7, HKS, USA, 2008.
  18. S. S. Yoon, Inelastic Analysis and Life Prediction for Structures Subject to Thermo- Mechanical Loading, Ph. D. Dissertation, KAIST, 2003.
  19. J. Y. Lim and S. B. Lee, "Applicability Evaluation of Modified Overlay Model on the Cyclic Behavior of 316L Stainless Steel at Room Temperature," KSME Transaction (A), Vol.28, No.11, pp.1603-1611, 2004.
  20. S. H. Kim, S. M. Kabir and T. I. Yeo, "Study on the Material Parameter Extraction of the Overlay Model for the Low Cycle Fatigue (LCF) Analaysis," Transactions of KSAE, Vol.18, No.1, pp.66-73, 2009.
  21. K. O. Lee, K. H. Bae, S. B. Lee and S. H. Kim, "Constitutive Modeling of Ferritic Stainless Steels for Automotive Engine Application," 2007 SEMC International Conference, 2007.
  22. K. O. Lee, A Novel Description of Thermo- Mechanical Fatigue Behavior in Dynamic Strain Aging Region, Ph. D. Dissertation, KAIST, 2007.
  23. G. Calilletaud and J. L. Chaboche, "Macroscopic Description of the Microstructural Changes Induced by Varying Temperature, Mechanical Behavior of Materials," Proc. 3rd. Int. Conf. Cambridge, Vol.2, p.23, 1979.
  24. N. Ohno and J. D. Wang, "Transformation of a Nonlinear Kinematic Hardening Rule to Multi- Surface from under Isothermal and Nonisothermal Conditions," Int. J. Plasticity, Vol.7, p.879, 1991. https://doi.org/10.1016/0749-6419(91)90023-R
  25. J. Lin, F. P. E. Dunne and D. R. Hayhurst, "Physically Based Temperature Dependence of Elastic-Viscoplastic Constitutive Equation for Copper Between $20^{\circ}C$ and $500^{\circ}C$. Philosophical Magazine A," Vol.74, No.2, p.359, 1996. https://doi.org/10.1080/01418619608242148