Development of Fiber Orientation Distribution in 3-dimentional Nonwovens by Using Compressed Air

압축공기를 이용한 3차원 부직포 구성섬유의 배향구조 형성에 관한 연구

  • No, Hyun-Woo (Department of Organic Material Science and Engineering, Pusan National University) ;
  • Yun, Min-Ju (Department of Organic Material Science and Engineering, Pusan National University) ;
  • Cho, Ki-Soon (Hanyoung Industry Co., Ltd.) ;
  • Kim, Han-Seong (Department of Organic Material Science and Engineering, Pusan National University)
  • 노현우 (부산대학교 유기시스템공학과) ;
  • 윤민주 (부산대학교 유기시스템공학과) ;
  • 조기순 (한영산업) ;
  • 김한성 (부산대학교 유기시스템공학과)
  • Received : 2010.07.30
  • Accepted : 2010.10.02
  • Published : 2010.10.31

Abstract

3-dimensional nonwoven fabrics show high loft performance owing to their dominant fiber orientation in the thickness direction. A high loft performance is a fundamental requirement for applications to cushion materials and pre-filters etc. In this study, the process was optimized to obtain 3-dimensional nonwoven fabrics with improved physical properties. The process conditions, such as the distance between the air ejection nozzles, compressed air pressure and web sustaining mesh size, were examined to develop a fiber orientation in the thickness direction of nonwoven fabrics. The mechanical properties and fiber orientation distribution function (ODF) were compared.

Keywords

Acknowledgement

Supported by : 부산대학교

References

  1. S. Backer and D. R. Petterson, "Some Principles of Nonwoven Fabrics 1", Text Res J, 1960, 30, 704-711. https://doi.org/10.1177/004051756003000912
  2. S. Bais-singh, R. D. Anandjiwala, and B. C. Goswami, "Characterizing Lateral Contraction Behavior of Spunbonded Nonwovens during Uniaxial Tensile Deformation", Text Res J, 1996, 66, 131-140. https://doi.org/10.1177/004051759606600302
  3. W. D. Freeston and M. M. Platt, "Mechanics of Elastic Performance of Textile Materials: Part XVI: Bending Rigidity of Nonwoven Fabrics", Text Res J, 1965, 35, 48-57. https://doi.org/10.1177/004051756503500106
  4. J. W. S. Hearle and P. J. Stevenson, "Nonwoven Fabric Studies, Part III: The Anisotropy of Nonwoven Fabrics", Text Res J, 1963, 33, 877-888. https://doi.org/10.1177/004051756303301101
  5. V. K. Kothari and A. Das, "Compressional Behavior of Nonwoven Geotextiles", Geotextiles and Geomembranes, 1992, 11, 235-253. https://doi.org/10.1016/0266-1144(92)90002-R
  6. V. K. Kothari and A. Das, "The Compressional Behavior of Spunbonded Nonwoven Fabrics", J Text Inst, 1993, 84, 16-30. https://doi.org/10.1080/00405009308631243
  7. D. Petterson and S. Backer, "Relationship between the Structural Geometry of a Fabric and Its Physical Properties", Text Res J, 1963, 33, 809-816. https://doi.org/10.1177/004051756303301007
  8. B. E. Thirlwell and L. R. G. Treloar, "Non-Woven Fabrics. Part VI: Dimensional and Mechanical Anisotropy", Text Res J, 1965, 35, 827-835. https://doi.org/10.1177/004051756503500907
  9. A. Watanabe, M. Miwa, A. Takeno, and T. Yokoi, "Fatigue Behavior of Aramid Nonwoven Fabrics under Hot-Press Conditions: Part I: Mechanical Properties", Text Res J, 1995, 65, 213-218. https://doi.org/10.1177/004051759506500404
  10. A. Watanabe, M. Miwa, A. Takeno, and T. Yokoi, "Fatigue Behavior of Aramid Nonwoven Fabrics under Hot-Press Conditions: Part II: Geometric Structure of Fiber Cross Sections", Text Res J, 1995, 65, 247-253. https://doi.org/10.1177/004051759506500501
  11. A. Watanabe, M. Miwa, A. Takeno, T. Yokoi, and A. Nakayama, "Fatigue Behavior of Aramid Nonwoven Fabrics Under Hot-Press Conditions: Part III: Effect of Fabric Structure on Compressive Behaviors", Text Res J, 1996, 66, 669-676. https://doi.org/10.1177/004051759606601101
  12. A. Watanabe, M. Miwa, T. Yokoi, and A. Nakayama, "Fatigue Behavior of Aramid Nonwoven Fabrics under Hot-Press Conditions: Part IV: Effect of Fiber Fineness on Mechanical Properties", Text Res J, 1998, 68, 77-86. https://doi.org/10.1177/004051759806800201
  13. A. Watanabe, M. Miwa, T. Yokoi, and A. Nakayama, "Fatigue Behavior of Aramid Nonwoven Fabrics under Hot- Press Conditions: Part V: Effect of Punching Density on Mechanical Properties", Text Res J, 1998, 68, 171-178. https://doi.org/10.1177/004051759806800304
  14. A. Watanabe, M. Miwa, and T. Yokoi, "Fatigue Behavior of Aramid Nonwoven Fabrics under Hot-Press Conditions: Part VI: Effect of Stable Base Fabrics on Mechanical Properties", Text Res J, 1999, 69, 1-10. https://doi.org/10.1177/004051759906900101
  15. A. Watanabe, M. Miwa, and T. Yokoi, "Fatigue Behavior of Aramid Nonwoven Fabrics under Hot-Press Conditions: Part VII: Effect of Needle Shape on Compressive Properties", Text Res J, 2000, 70, 402-408. https://doi.org/10.1177/004051750007000505
  16. P. Behnam, M. Amy, P. Mike, and H. S. Kim, "Structureprocess- property Relationships in Hydroentangled Nonwovens- Part 1: Preliminary Experimental Observations", Int'l Nonwovens J, 2004, 13, 15-22.
  17. H. S. Kim, "Relationship between Fiber Orientation Distribution Function and Mechanical Anisotropy of Thermally Point-Bonded Nonwovens", Fiber Polym, 2004, 5, 177-181. https://doi.org/10.1007/BF02902996
  18. B. Pourdeyhimi, R. Dent, and H. Davis, "Measuring Fiber Orientation in Nonwovens, Part III: Fourier Transform", Text Res J, 1997, 67(2), 143-151. https://doi.org/10.1177/004051759706700211
  19. H. S. Kim, "Orthotropic Theory for the Prediction of Mechanical Performance in Thermally Point-Bonded Nonwovens", Fiber Polym, 2004, 5, 139-144. https://doi.org/10.1007/BF02902928
  20. H. S. Kim, A. Deshpande, P. Desai, B. Pourdeyhimi, and A. S. Abhiraman, "Anisotropy in Mechanical Properties of Thermally Point-Bonded Nonwovens: Experimental Observation", Text Res J, 2001, 71, 965-975. https://doi.org/10.1177/004051750107101106
  21. R. H. Gong, Z. Dong, and I. Porat, "Novel Technology for 3D Nonwovens", Text Res J, 2003, 73, 120-123. https://doi.org/10.1177/004051750307300205
  22. R. H. Gong, C. Fang, and I. Porat, "Single Process Production of 3D Nonwoven Shell Structures - Part 1: Web Forming System Design Using CFD Modeling", Int'l Nonwovens J, 2000, 9, 20-24.
  23. N. Ravirala and R. H. Gong, "Effects of Mold Porosity on Fiber Distribution in a 3D Nonwoven Process", Text Res J, 2003 73, 588-592. https://doi.org/10.1177/004051750307300705
  24. D. V. Parikh, T. A. Calamari, A. P. S. Awhney, K. Q. Robert, L. Kimmel, E. Glynn, O. Jirsak, I. Mackova, and T. Saunders, "Compressional Behavior of Perpendicular-Laid Nonwovens Containing Cotton", Text Res J, 2002, 72, 550- 554. https://doi.org/10.1177/004051750207200615
  25. D. V. Parikh, T. A. Calamari, W. R. Goynes, Y. Chen, and O. Jirsak, "Compressibility of Cotton Blend Perpendicular- Laid Nonwovens", Text Res J, 2004, 74, 7-12. https://doi.org/10.1177/004051750407400102
  26. K. Y. Kang, K. Y. Lee, K. J. Jo, and H. S. Kim, "Anisotropy in Structure and Mechanical Properties of Perpendicular-laid Nonwovens", J Mater Sci, 2008, 43, 2754-2760. https://doi.org/10.1007/s10853-008-2482-8
  27. K. Y. Kang, K. Y. Lee, and H. S. Kim, "Compressional Fatigue Behaviors of Air and Mechanical Folding Nonwoven Fabrics", Fiber Polym, 2008, 9, 203-209. https://doi.org/10.1007/s12221-008-0033-1
  28. K. Y. Kang and H. S. Kim, "Compressional Fatigue Behaviors of Perpendicular-Laid Nonwovens", Text Sci Eng, 2005, 42, 100-107.