Physical Properties of Poly(p-dioxanone)(PPDO) and In vitro Degradation Behavior of Monofilament Suture

Poly(p-dioxanone)(PPDO)의 물리적 특성과 모노필라멘트 봉합사의 In vitro 가수분해 특성

  • Received : 2010.06.17
  • Accepted : 2010.08.04
  • Published : 2010.08.31

Abstract

The bulk polymerization and thermal properties of biodegradable poly(1,4-dioxan-2-one)[poly(p-dioxanone), PPDO] were investigated. The in vitro hydrolytic degradation behavior of PPDO monofilament sutures were also examined over a 16 week period at $37^{\circ}C$ and $45^{\circ}C$. The degree of PPDO polymerization decreased with increasing content of the initiator, lauryl alcohol[$CH_3(CH_2)_{11}OH$]. The thermal stability of PPDO was inversely proportional to the content of the catalyst, Sn(II) ethylhexanoate[$Sn(Oct)_2$]. Considering the efficiency of polymerization and the thermal stability of PPDO, the proper contents of Lauryl alcohol as an initiator and ethylhexanoate as a catalyst were 1600~1900 ppm and 20~30 ppm, respectively. Based on the determination of the half crystallization time, the crystallization speeds of dyed PPDO chip and monofilament suture were higher than those of undyed PPDO chip and monofilament suture. The maximum rates of crystallization of the dyed and undyed samples were observed at around $40{\sim}50^{\circ}C$ and $50{\sim}60^{\circ}C$, respectively. At the beginning of the in vitro time, the tensile strength of the PPDO monofilament suture decreased slowly but decreased considerably after a certain period, indicating that the degradation proceeded in two steps, the first occurring in the amorphous regions and the second in the crystalline regions. The average molecular weight of the PPDO monofilament suture decreased continuously from the beginning of the in vitro time, due to the random nature of the degradation process. The breaking strength retention (BSR) and molecular weight of the PPDO monofilament suture showed a quadratic function relationship.

Keywords

References

  1. J. A. Ray, N. Doddi, D. Regula, J. A. Williams, and A. Melverger, "Polydioxanone (PDS), a Novel Monofilament Synthetic Absorbable Suture", Surg Gynecol Obstet, 1981, 153, 497-507.
  2. J. A. Von Fraunhofer, R. S. Storey, I. K. Stone, and B. J. Masterson, "Tensile Strength of Suture Materials", J Biomed Mater Res, 1985, 19, 595-600. https://doi.org/10.1002/jbm.820190511
  3. S. A. Metz, N. Chegini, and B. J. Musterson, "In vivo and In vitro Degradation of Monofilament Absorbable Suture, $PDS^{(R)}$ and $Maxon^{(R)}$", Biomaterials, 1990, 11, 41-45. https://doi.org/10.1016/0142-9612(90)90050-Z
  4. H. L. Lin, C. C. Chu, and D. Grubb, "Hydrolytic Degradation and Morphologic Study of Poly-p-dioxanone", J Biomed Mater Res, 1993, 27, 153-166. https://doi.org/10.1002/jbm.820270204
  5. K. Tomihata, M. Suzuki, T. Oka, and Y. Ikada, "A New Resorbable Monofilament Suture", Polym Degrad Stab, 1998, 59, 13-18. https://doi.org/10.1016/S0141-3910(97)00183-3
  6. S.-D. Ding and Y.-Z. Wang, "Enhanced Thermal Stability of Poly(1,4 dioxan-2-one)", Polym Degrad Stab, 2006, 91, 2465-2470. https://doi.org/10.1016/j.polymdegradstab.2006.03.007
  7. E. S. Lipinsky, R. G. Sinclair, and J. D. Browning, US Patent, 5,767,222(1993).
  8. A. Gertzman and D. R. Thompson, US Patent, 4,591,630 (1986).
  9. V. V. Cachia and M. S. Juan, US Patent, 5,893,850(1999).
  10. F. V. Mattei and N. Doddi, US Patent, 4,440,789(1984).
  11. N. Haruo, Y. Mitsuhiro, E. Takeshi, and T. Yutaka, "Equilibrium Polymerization Behavior of 1,4-Dioxan-2-one in Bulk", Macromolecules, 2000, 33, 6982-6986. https://doi.org/10.1021/ma000457t
  12. N. Hauro, Y. Mitsuhiro, N. Masumi, E. Takeshi, and T. Yutaka, "Synthesis of Metal-Free Poly(1,4-dioxan-2-one) by Enzyme-Catalyzed Ring-Opening Polymerization", J Polym Sci, Polym Chem Ed, 2000, 38, 1560-1567. https://doi.org/10.1002/(SICI)1099-0518(20000501)38:9<1560::AID-POLA20>3.0.CO;2-F
  13. N. Doddi, C. Verfelt, and D. Wasserman, "Synthetic Absorbable Surgical Devices of Poly-dioxanone", US Patent, 4,052,988(1977).
  14. S.-D. Ding and Y.-Z. Wang, "Enhanced Thermal Stability of Poly(1,4-dioxan-2-one) in Melt by Adding a Chelator", Polym Degrad Stab, 2006, 91, 2465-2470. https://doi.org/10.1016/j.polymdegradstab.2006.03.007
  15. H. R. Kricheldorf and D. O. Damrau, "Polylactone, 42.Zn L-lactate-catalized Polymerization of 1,4-dioxane-2-one", Macromol Chem Phys, 1998, 99, 1089-1097.
  16. K. K. Yang, X. L. Wang, Y. Z. Wang, B. Wu, Y. D. Jin, and B. Yang, "Kinetics of Thermal Degradation and Thermal Oxidative Degradation of Poly(p-dioxanone)", J Eur Polym, 2003, 39, 1567-1574. https://doi.org/10.1016/S0014-3057(03)00052-1
  17. N. Haruo, Y. Mitsuhiro, H. Norikazu, E. Takeshi, and T. Yutaka, "Thermal Decomposition of Poly(1,4-dioxan-2- one)", Polym Degrad Stab, 2000, 70, 485-496. https://doi.org/10.1016/S0141-3910(00)00145-2
  18. R. S. Bezwada, D. D. Jamiolkowski, I.-Y. Lee, V. Agarwal, J. Persivale, S. Trenka-Benthin, M. Erneta, J. Suryadevara, A. Yang, and S. Liu, "Monocryl Suture, a New Ultra-pliable Absorbable Monofilament Suture", Biomaterials, 1995, 16, 1141-1148. https://doi.org/10.1016/0142-9612(95)93577-Z
  19. G. T. Rodeheaver, K. A. Beltran, C. W. Green, B. C. Faulkner, B. M. Stiles, and G. W. Stanimir, "Biomechanical and Clinical Performance of a New Synthetic Monofilament Absorbable Suture", J Long Term Eff Med Implants, 1996, 14, 181-198.
  20. E. K. Bayraktar and A. S. Hockenberger, "Investigating the Knot Performance of Silk, Polyamide, Polyester, and Polypropylene Sutures", Text Res J, 2001, 71, 435-440. https://doi.org/10.1177/004051750107100511
  21. K. Ishikiriyama, M. Pyda, G. Zhang, T. Forschner, J. Grebowicz, and B. Wunderlich, "Heat Capacity of Poly-pdioxanone", J Macromol Sci Phys, 1998, B37(1), 27-44.
  22. J.-T. Hong, N.-S. Cho, H.-S. Yoon, T.-H. Kim, D.-H. Lee, and W.-G. Kim, "Preparation and Characterization of Biodegradable Poly(Trimethylene Carbonate-$\varepsilon$-Caprolactone)-Block-Poly(p-Dioxanone) Copolymers", J Polym Sci, Part A: Polym Chem, 2005, 43, 2790-2799. https://doi.org/10.1002/pola.20752
  23. O. Wachsen, K. H. Reichert, R. P. Kruger, H. Much, and G. Schulz, "Thermal Decomposition of Biodegradable Polyesters- III. Studies on the Mechanisms of Thermal Degradation of Oligo-L-lactide Using SEC, LACCC and MALDI-TOFMS", Polym Degrad Stab, 1997, 55, 225-231. https://doi.org/10.1016/S0141-3910(96)00127-9
  24. H. Y. Kim, S. H. Kim, J. H. Lee, and S. H. Kwon, "Quantitative Analysis of Cyclic Oligomers in Poly(ethylene terephthalate)", J Korean Fiber Soc, 1999, 36, 125-131.
  25. S. A. Jabarin and E. A. Lofgern, "Solid State Polymerization of Poly(ethylene Terephthalate) : Kinetic and Property Parameters", J Appl Polym Sci, 1986, 32, 5315-5335. https://doi.org/10.1002/app.1986.070320607
  26. 湯木和男, "飽和ホリエステル樹脂ハンドブック", 日刊工業新聞社, 1989.
  27. H. Y. Kim, "Polymerization Behaviour for Polyglycolic Acid Biodegradable Materials", J Korean Fiber Soc, 1997, 34, 311-317.
  28. F. E. Kohn, J. G. Van Ommen, and J. Feiyan, "The Mechanism of the Ring-opening Polymerization of Lactide and Glycolide", J Eur Polym, 1983, 19, 1081-1088. https://doi.org/10.1016/0014-3057(83)90001-0
  29. A. Kowalski, A. Duda, and S. Penczek, "Kinetics and Mechanism of Cyclic Esters Polymerization Initiated with tin(II) Octoate, Polymerization of $\varepsilon$-caprolactone", Macromol Rapid Commun, 1998, 19, 567-572.
  30. A. Schindler, Y. M. Hibionada, and C. G. Pitt, "Aliphatic Polyesters III. Molecular Weight and Molecular Weight Distribution in Alcohol-Initiated Polymerization of $\varepsilon$- Caprolactone", J Polym Sci, Polym Chem Ed, 1982, 20, 319-326. https://doi.org/10.1002/pol.1982.170200206
  31. T. Ozawa, "A New Method of Analyzing Thermogravimetric Data", Bull Chem Soc Japan, 1965, 38, 1881-1886. https://doi.org/10.1246/bcsj.38.1881
  32. C. D. Doyle, "Kinetics Analysis of Thermogravimetric Data", J Appl Polym Sci, 1961, 5(15), 285-292. https://doi.org/10.1002/app.1961.070051506
  33. J. H. Flynn and L. A. Wall, "A Quick, Direct Method for the Determination of Activation Energy from Thermogravimetric Data", Polym Lett, 1966, 4, 323-328. https://doi.org/10.1002/pol.1966.110040504
  34. L. Reich, "A Rapid Estimation of Activation Energy from Thermogravimetric Traces", Polym Lett, 1964, 2, 621-623. https://doi.org/10.1002/pol.1964.110020611
  35. S. Ichihara, H. Nakagawa, and Y. Tsukazawa, "Thermal Decomposition Behaviors of Polymers Analyzed with Thermogravimetry", Kobunshi Ronbunshu, 1994, 51(7), 459-465. https://doi.org/10.1295/koron.51.459
  36. 新田一成, Japan Patent, 昭 56-157422(1981).
  37. I. C. McNeill and H. A. Leiper, "Degradation Studies of Some Polyesters and Polycarbonates-2. Polylactide: Degradation under Isothermal Conditions, Thermal Degradation Mechanism and Photolysis of the Polymer", Polym Degrad Stab, 1985, 11, 309-326. https://doi.org/10.1016/0141-3910(85)90035-7
  38. F. D. Kopinke, M. Remmler, K. Mackenzie, M. Moder, and O. Wachsen, "Thermal Decomposition of Biodegradable Polyesters-II. Poly(lactic acid)", Polym Degrad Stab, 1996, 53, 329-342. https://doi.org/10.1016/0141-3910(96)00102-4
  39. A. Babanalbandi, D. J. T. Hill, and L. Kettle, "Thermal Stability of Poly(lactic acid) before and after $\gamma$-radiolsis", Polym Int, 1999, 48, 980-984. https://doi.org/10.1002/(SICI)1097-0126(199910)48:10<980::AID-PI257>3.0.CO;2-B
  40. D. R. Cooper, G. J. Sutton, and B. J. Tighe, "Poly $\alpha$-ester Degradation Studies. V. Thermal Degradation of Polyglycolide", J Polym Sci, Polym Chem Ed, 1973, 11, 2045-2056. https://doi.org/10.1002/pol.1973.170110823
  41. S. Straus and L. A. Wall, "Pyrolysis of Polyamides", J Res Nat Bur Stand, 1958, 60(1), 39-45. https://doi.org/10.6028/jres.060.005
  42. P. Meares, "In the Fusion and Crystallization of Polymers", D. van Nostrand, New York, 1967, Chap. 5.
  43. B. Wunderlich, "Macromolecular Physics", Academic, New York, 1976, Vol. 2.
  44. H. M. Tong, N. J. Chou, R. F. Saraf, and S. P. Kowalczyk, "In Polymer Structures and Synthesis Methods", Butterworth-Heinmann: Stoneham, MA, 1994, Chap. 1.
  45. S. Andjelic, D. Jamiolkowski, J. Mcdivitt, J. Fischer, J. Zhou, and R. Vetrecin, "Crystallization Study on Absorbable Poly(p-dioxanone) Polymers by Differential Scanning Calorimetry", J Appl Polym Sci, 2001, 79, 742-759. https://doi.org/10.1002/1097-4628(20010124)79:4<742::AID-APP190>3.0.CO;2-J
  46. D. F. Farrar and R. K. Gillson, "Hydrolytic Degradation of Polyglyconate B: The Relationship between Degradation Time, Strength and Molecular Weight", Biomaterials, 2002, 23, 3905-3912. https://doi.org/10.1016/S0142-9612(02)00140-0
  47. S. Li and M. Vert in "Biodegradation of Aliphatic Polyester" (G. Scott and D. Gilead Eds.), "Degradable Polymersprinciples and Applications", Chapman & Hall, London, 1995, pp.43-87.
  48. I. M. Ward, "Mechanical Properties of Solid Polymers", 2nd Ed., Wiley, Chichester, UK, 1983.