DOI QR코드

DOI QR Code

Study on Thermal Stability of Ni-P-Fe and Ni-P-B Layers Electroplated on Alloy 600

Alloy 600에 전기 도금한 Ni-P-Fe 및 Ni-P-B 층의 열적 안정성 연구

  • Kim, Myong-Jin (Korea Atomic Energy Research Institute, Nuclear Materials Research Division) ;
  • Kim, Joung-Soo (Korea Atomic Energy Research Institute, Nuclear Materials Research Division) ;
  • Kim, Dong-Jin (Korea Atomic Energy Research Institute, Nuclear Materials Research Division) ;
  • Kim, Hong-Pyo (Korea Atomic Energy Research Institute, Nuclear Materials Research Division)
  • 김명진 (한국원자력연구원, 원자력재료연구부) ;
  • 김정수 (한국원자력연구원, 원자력재료연구부) ;
  • 김동진 (한국원자력연구원, 원자력재료연구부) ;
  • 김홍표 (한국원자력연구원, 원자력재료연구부)
  • Received : 2010.02.23
  • Accepted : 2010.04.29
  • Published : 2010.04.30

Abstract

In this study, thermal stability of the mechanical properties of Ni-P-B and Ni-P-Fe layers electroplated on Alloy 600 material was evaluated by measuring their microhardness, tensile strength, and elongation after heat treatment at $325^{\circ}C$ and $400^{\circ}C$. According to the results, there was no noticeable change in microhardness of the two electrodeposits before and after heat treatment at the temperatures for 30 days. In the case of a Ni-P-B electrodeposit, ultimate tensile strength (UTS) slightly increases with heat treatment time, while its elongation decreases, showing good thermal stability in the mechanical properties at high temperature. On the other hand, UTS and elongation of Ni-P-Fe decrease with heat treatment time, which is very unusual observation. This result was attributed to the bad microstructure of Ni-P-Fe having many defects in the deposit formed early stage of an electroplating process and their redistribution to link to become large ones during heat treatment.

Keywords

References

  1. P. M. Scott, Corrosion 56 (2000) 771. https://doi.org/10.5006/1.3280580
  2. H. P. Kim, S. S. Hwang, D. J. Kim, J. S. Kim, Y. S. Kim, M. K. Joung, Stress Corrosion Cracking of a Kori 1 Retired Steam Generator Tube, EUROCORR2004, Nice, France, 2004.
  3. G. Palumbo, F. Gonzalez, A. M. Brennenstuhl, U. Erb, W. Shmayda, P. C. Lichtenberger, Nanostructured Materials 9 (1997) 737. https://doi.org/10.1016/S0965-9773(97)00160-8
  4. M. da Silva, C. Wille, U. Klement, P. Choi, T. Al-Kassa, Mater. Sci. Eng. A 445-446 (2007) 31. https://doi.org/10.1016/j.msea.2006.07.069
  5. D. J. Kim, Y. M. Roh, M. H. Seo, J. S. Kim, Surf. Coat. Technol. 192 (2005) 88. https://doi.org/10.1016/j.surfcoat.2004.03.055
  6. D. J. Kim, M. J. Kim, J. S. Kim, H. P. Kim, Surf. Coat. Technol. 202 (2008) 2519. https://doi.org/10.1016/j.surfcoat.2007.09.027
  7. J. S. Kim et al., "KAERI, Assessment of Corrosion Characteristics and Development of Remedial Technology in Nuclear Materials", KAERI/RR-2514/2004 (2004).
  8. A. M. Alfantazi, U. Erb, Mater. Sci. Eng. A 212 (1996) 123. https://doi.org/10.1016/0921-5093(96)10187-8
  9. M. H. Seo, J. S. Kim, W. S. Hwang, D. J. Kim, S. S. Hwang, B. S. Chun, Surf. Coat. Technol. 176(2) (2004) 135. https://doi.org/10.1016/S0257-8972(03)00661-3
  10. K. Krishnaveni, T. S. N. Sankara Narayanan, S. K. Seshadri, Surf. Coat. Technol. 190 (2005) 115. https://doi.org/10.1016/j.surfcoat.2004.01.038