Application of Mechanoluminescence for the Dynamic Visualization of an Alumina Fracture

  • Kim, Ji-Sik (School of Nano & Materials Science Engineering, Kyungpook National University)
  • Received : 2010.02.12
  • Accepted : 2010.03.04
  • Published : 2010.03.31

Abstract

The propagation of cracks was quantitatively analyzed in $Al_2O_3$ ceramic using the mechanoluminescence (ML) of $SrAl_2O_4$:Eu,Dy. The bridging zones behind the crack tip were clearly detected in the crack path of $Al_2O_3$ within a realistic time frame. The magnitudes and shapes of the bridging stress distributions changed with the advancing cracks. They continued to change with the change in the applied load even after the cessation of crack propagation. Effective toughening then commenced, and the applied stress intensity factors dramatically increased up to ~50 MPa $\sqrt{m}$. The expected $K_{Tip}$ values based on the instantaneous bridging stress distributions obtained from the ML observations deviated greatly from those obtained from the measurement using the conventional crack tip lengths; rather, they support the results obtained when bridging tips were used in the quasidynamic crack propagations.

Keywords

References

  1. J.J. Kruzic , R.M. Cannon, J.W. Ager III, and R.O. Ritchie, Acta Mater. 53 2595 (2005). https://doi.org/10.1016/j.actamat.2005.02.018
  2. C.J. Gilbert, and R.O. Ritchie, Acta Mater. 46 609 (1998). https://doi.org/10.1016/S1359-6454(97)00248-6
  3. R.D. Geraghity, J.C. Hay, and K.W. White, Acta Mater. 47 1345 (1999). https://doi.org/10.1016/S1359-6454(98)00408-X
  4. M.E. Ebrahimi, Chevalier, and Fantozzi, J. Eur. Ceram. Soc. 23 943 (2003). https://doi.org/10.1016/S0955-2219(02)00230-3
  5. H. Ichimaru, and Pezzotti, Mater. Sci. Eng. A 326 261 (2002).
  6. R.E. Grimes, G.P. Kelkar, and L. Guazzone, K.W. White, J. Am. Ceram. Soc. 73 1399 (1990). https://doi.org/10.1111/j.1151-2916.1990.tb05211.x
  7. R.W. Steinbrech, A. Reichl, and W. Schaarwachter, J. Am. Ceram. Soc. 73 2009 (1990). https://doi.org/10.1111/j.1151-2916.1990.tb05260.x
  8. A.J. Rosakis, O. Samudrala, and D. Coker, Science 284 1337 (1999). https://doi.org/10.1126/science.284.5418.1337
  9. Q. Shan, and R.J. Dewhurst, Appl. Phys. Lett. 62 2649 (1993). https://doi.org/10.1063/1.109274
  10. H. Nakano, and S. Nagai, Jpn J. Appl. Phys. 32 2540 (1993). https://doi.org/10.1143/JJAP.32.2540
  11. T. Yoshimura, N. Akiyama, M. Yoshida, and T. Kobayashi, Int. J. Jpn Soc. Prec. Eng. 29 168 (1995).
  12. B. Zhang, J.B. Li, Y. Deng, Z.D. Guan, Smart mater. Struct. 10 846 (2001).
  13. J.S. Kim, Y.N. Kwon, N. Shin, and K.S. Sohn, Acta Mater. 53 4337 (2005). https://doi.org/10.1016/j.actamat.2005.05.032
  14. K.S. Sohn, S.Y. Seo, Y.N. Kwon, and H.D. Park, J. Am. Ceram. Soc. 85, 712 (2002).
  15. J.S. Kim, Y.N. Kwon, N. Shin, and K.S. Sohn, Acta Mater. 51, 6437 (2003). https://doi.org/10.1016/j.actamat.2003.08.013
  16. K.S. Sohn, D.H. Park, and J.S. Kim, J. Electrochem Soc. 152, H161 (2005) https://doi.org/10.1149/1.2012947
  17. J. S. Kim, K. Kibble, M. Stanford, Y. N. Kwon, K.-S. Sohn, Met. Mat. Int. 14, 165 (2008). https://doi.org/10.3365/met.mat.2008.04.16
  18. ASTM Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials, ASTM E399-83.
  19. X.Z. Hu, and F.H. Wittmann, J. Mater. Civil Eng. 2 15 (1990). https://doi.org/10.1061/(ASCE)0899-1561(1990)2:1(15)
  20. J.C. Hay, and K.W. White, Acta Metal. Mater. 40 3017 (1992). https://doi.org/10.1016/0956-7151(92)90465-Q
  21. T. Fett, D. Munz, and G. Thun, J. Am. Ceram. Soc. 78 949 (1995). https://doi.org/10.1111/j.1151-2916.1995.tb08420.x
  22. X.Z. Hu, E.H. Luts, and M. Swain, J. Am. Ceram. Soc. 74 1828 (1991). https://doi.org/10.1111/j.1151-2916.1991.tb07795.x
  23. J. Rodel, J. Kelly, and B.R. Lawn, J. Am. Ceram. Soc. 73 3313 (1990). https://doi.org/10.1111/j.1151-2916.1990.tb06454.x
  24. S.J. Bennison, and B.R. Lawn. Acta Mater. 37 2659 (1989). https://doi.org/10.1016/0001-6160(89)90299-X