The Mechanisms for Xylose Transport into Yeasts

효모내로의 Xylose 운반 기작

  • Han, Ji-Hye (Department of Bioprocess Engineering, Chonbuk National University) ;
  • Choi, Gi-Wook (Changhae Institute of Cassava and Ethanol Research, Changhae Ethanol Co., Ltd.) ;
  • Chung, Bong-Woo (Department of Bioprocess Engineering, Chonbuk National University) ;
  • Min, Ji-Ho (Department of Bioprocess Engineering, Chonbuk National University)
  • 한지혜 (전북대학교 생물공정공학과) ;
  • 최기욱 ((주) 창해에탄올 창해연구소) ;
  • 정봉우 (전북대학교 생물공정공학과) ;
  • 민지호 (전북대학교 생물공정공학과)
  • Received : 2010.02.27
  • Accepted : 2010.03.15
  • Published : 2010.03.28

Abstract

The biochemical study of sugar uptake in yeasts started five decades ago and led to the early production of abundant kinetic and mechanistic data. However, the first accurate overview of the underlying sugar transporter genes was obtained relatively late, due mainly to the genetic complexity of hexose uptake in the model yeast, Saccharomyces cerevisiae. The genomic era generated in turn a massive amount of information, allowing the identification of a multitude of putative sugar transporter and sensor-encoding genes in yeast genomes, many of which are phylogenetically related. This review aims to briefly summarize our current knowledges on the biochemical and molecular features of the transporters of pentoses in yeasts, when possible establishing links between previous kinetic studies and genomic data currently available. Emphasis is given to recent developments concerning the identification of D-xylose transporter genes, which are thought to be key players in the optimization of S. cerevisiae for bioethanol production from lignocellulose hydrolysates.

S. cerevisias의 치명적인 약점인 xylose 또는 arabinose가 상당부분을 차지하는 hemicellulose 기수분해물인 오탄당 발효의 극히 낮은 효율은 유전자 변형 및 대사적 흐름을 조절하여 세포 내로의 오탄당 섭취 및 활용 증가를 위한 연구가 꾸준히 진행되고 있다. S. cerevisie에서 오탄당은 육탄당보다 1-2 배 낮은 친화력을 가지고 있어, 오탄당 운반은 이를 이용한 바이오에탄올 발효에 있어서 중요한 초기 조절 단계이다. 오탄당 이용가능 S. cereivsiae에서 오탄당 운반기의 발현 관련 소수의 연구가 보고되고는 있으나 아직까지 눈에 띠는 효율 증기눈 보교되지 않았다. 최근 보고된 S. cerevisiae에서 C. intermeda 유래의 glucose/xylose의 확산을 용이하게 하는 운반기와 공동수송기의 이종발현이 처음으로 활성화 되었음이 보고 되었다. 따라서 그러므로 높은 친화력의 xylose 운반기의 발현은 이미 xylose로 부터 바이오에탄올 발효공정은 최적화되어 있지만 여전히 몇 가지 제한 요소들을 가지고 있는 S. cerevisiae 균주들의 xylsoe 발효공정 효율 향상에 큰 기여를 할 수 있을 것으로 기대된다.

Keywords

References

  1. Becker, J. and E. Boles. 2003. A modified Saccharomyces cerevisiae strain that consumes L-arabinose and produces ethanol. Appl. Environ. Microbiol. 69: 4144-4150. https://doi.org/10.1128/AEM.69.7.4144-4150.2003
  2. Cason, D. T., I. Spencer-Martins, and N. van Uden. 1986. Transport of fructose by a proton symport in a brewing yeast. FEMS Microbiol. Lett. 36: 307-309. https://doi.org/10.1111/j.1574-6968.1986.tb01715.x
  3. Chin, J. W., R. Khankal, C. A. Monroe, C. D. Maranas, and P. C. Cirino. 2008. Analysis of NADPH supply during xylitol production by engineered Escheridhia coli. Biotechnol. Bioeng. 102: 209-220.
  4. Cirillo, V. P. 1968. Galactose transport in Saccharomyces cerevisiae. I. Nonmetabolized sugars as substrates and inducers of the galactose transport system. J. Bacterio.l 95: 1727-1731.
  5. De Hertogh, B., F. Hancy, A. Goffeau, and P. V. Baret. 2006. Emergence of species-specific transporters during evolution of the Hemiascomycete phylum. Genetics. 172: 771-781.
  6. Does, A. L. and L. F. Bisson. 1989. Characterization of xylose uptake in the yeasts Pichia heedii and Pichia stipitis. Appl. Environ. Microb. 55: 159-164.
  7. Fonseca, C., R. Romao, H. Rodrigues de Sousa, B. Hahn-H¨agerdal, and I. Spencer-Martins. 2007. L-Arabinose transport and catabolism in yeast. FEBS J. 274: 3589-3600. https://doi.org/10.1111/j.1742-4658.2007.05892.x
  8. Gardonyi, M., M. Jeppsson, G. Liden, M.F. Gorwa-Grauslund, and B. Hahn-Hagerdal. 2003a. Control of xylose consumption by xylose transport in recombinant Saccharomyces cerevisiae. Biotechnol. Bioeng. 82: 818-824. https://doi.org/10.1002/bit.10631
  9. Gardonyi, M., M. Osterberg, C. Rodrigues, I. Spencer-Martins, and B. Hahn-H¨agerdal. 2003b. High capacity xylose transport in Candida intermedia PYCC 4715. FEMS Yeast Res. 3: 45-52.
  10. Gaur, M., N. Puri, R. Manoharlal, V. Rai, G. Mukhopadhayay, D. Choudhury, and R. Prasad. 2008. MFS transportome of the human pathogenic yeast Candida albicans. BMC Genomics. 9: 579-590. https://doi.org/10.1186/1471-2164-9-579
  11. Hahn-Hagerdal, B., K. Karhumaa, C. Fonseca, I. Spencer-Martins, and M. F. Gorwa-Grauslund. 2007. Towards industrial pentosefermenting yeast strains. Appl. Microbiol. Biotechnol. 74: 937-953. https://doi.org/10.1007/s00253-006-0827-2
  12. Hahn-Hägerdal, B., K. Karhumaa, M. Jeppson, and M. F. Gorwa-Grauslund. 2007. Metabolic engineering for pentose utilization in Saccharomyces cerevisiae. Adv. Biochem. Eng. Biotechnol. 108: 147-177.
  13. Hahn-Hagerdal, B., N. Galbe, M. F. Gorwa-Grauslund, G. Liden, and G. Zacchi. 2006. Biol-ethanol-the fuel of tomorrow from the residues of today. Trend Biotechnol. 24: 549-556. https://doi.org/10.1016/j.tibtech.2006.10.004
  14. Hamacher, T., J. Becker, M. Ga'rdonyi, B. Hahn-Ha gerdal, and E. Boles. 2002. Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology 148: 2783-2788.
  15. Henderson, P. J. F., and M. C. J. Maiden. 1990. Homologous sugar transport proteins in Escherichia coli and their relatives in both prokaryotes and eukaryotes. Phil. Trans. R. Soc. Land B. 326: 391-410. https://doi.org/10.1098/rstb.1990.0020
  16. Heredia, C. F., A. Sols, and G. Delafuente. 1968. Specificity of the constitutive hexose transport in yeast. Eur. J. Biochem. 5: 321-329. https://doi.org/10.1111/j.1432-1033.1968.tb00373.x
  17. Jeffries, T. W., I. V. Grigoriev, J. Grimwood, J. M. Laplaza, A. Aerts, A. Salamov, J. Schmutz, E. Lindquist, P. Dehal, H. Shapiro, Y.-S. Jin, V. Passoth, and P.M. Richardson. 2007. Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis. Nat. Biotechnol. 25: 319-326. https://doi.org/10.1038/nbt1290
  18. Jeffries, T. W. 2006. Engineering yeasts for xylose metabolism. Curr. Opin. Biotechnol. 17: 320-326. https://doi.org/10.1016/j.copbio.2006.05.008
  19. Karhumaa, K., B. Wiedemann, B. Hahn-Hägerdal, E. Boles, and M. F. Gorwa-Grauslund. 2006. Co-utilization of Larabinose and Dxylose by laboratory and industrial Saccharomyces cerevisiae strains. Microb. Cell Fact. 5: 18. https://doi.org/10.1186/1475-2859-5-18
  20. Kilian, S. G. and N. van Uden. 1988. Transport of xylose and glucose in the xylose-fermenting yeast Pichia stipitis. Appl. Microbiol. Biotechnol. 27: 545-548.
  21. Kotyk, A. and C. Haškovec. 1967. Properties of the sugar carrier in baker's yeast. II. Specificity of transport. Folia Microbiol (Praha) 12: 121-131. https://doi.org/10.1007/BF02896872
  22. Kotter, P. and M. Ciriacy. 1993. Xylose fermentation by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 38: 776-783. https://doi.org/10.1007/BF00167144
  23. Kresnowati, M. T. A. P., W. A. van Winden, M. J. H. Almering, A. ten Pierick, C. Ras, T. A. Knijnenburg, P. Daran-Lapujade, J. T. Pronk, J. J. Heijnen, and J. M. Daran. 2006. When transcriptome meets metabolome: fast cellular responses of yeast to sudden relief of glucose limitation. Mol. Syst. Biol. 2, 49.
  24. Kruckeberg, A. L., M. C. Walsh, and K. van Dam. 1998. How do yeast cells sense glucose? Bioessays 20: 972-976.
  25. Kruckeberg, A. L., L. Ye, J. A. Berden, and K. van Dam. 1999. Functional expression, quantification and cellular localization of the Hxt2 hexose transporter of Saccharomyces cerevisiae tagged with the green fluorescent protein. Biochem. J. 339: 299-307. https://doi.org/10.1042/0264-6021:3390299
  26. Kuyper, M., M. J. Toirkens, J. A. Diderich, A. A. Winkler, J. P. van Dijken, and J. T. Pronk. 2005. Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res. 5: 925-934. https://doi.org/10.1016/j.femsyr.2005.04.004
  27. Leandro, M. J., C. Fonseca, and P. Concalves. 2009. Hexose and pentose transport in ascomycetous yeasts: an overview. FEMS Yeast Res. 9: 511-525. https://doi.org/10.1111/j.1567-1364.2009.00509.x
  28. Leandro, M. J., I. Specer-Martins, P. Concalves. 2008. The expression in Saccharomyces cerevisiae of a glucoe/xylose symporter from Candida intermedia is affected by the presence of a glucose/xylose facilitator. Microbiology 154: 1646-1655. https://doi.org/10.1099/mic.0.2007/015511-0
  29. Leandro, M. J., P. Goncalves, and I. Spencer-Martins. 2006. Two glucose/xylose transporter genes from the yeast Candida intermedia: first molecular characterization of a yeast $xylose-H^+$ symporter. Biochem. J. 395: 543-549. https://doi.org/10.1042/BJ20051465
  30. Lucas, C. and N. van Uden. 1986. Transport of hemicelluloses monomers in the xylose-fermenting yeast Candida shehatae. Appl. Microbiol. Biot. 23: 491-495. https://doi.org/10.1007/BF02346066
  31. Pao, S. S., I. T. Paulsen, and M. H. Jr Saier. 1998. Major facilitator superfamily. Microbiol. Mol. Biol. R. 62: 1-34.
  32. Rolland, F., J. Winderickx, and J. M. Thevelein. 2002. Glucosesensing and -signalling mechanisms in yeast. FEMS Yeast Res. 2: 183-201.
  33. Runquist, D., C. Fonseca, P. Radström, I. Spencer-Martins, and B. Hahn-Hägerdal. 2009. Exprission of the Gxf1 transporter from Candida intermedia improves fermentation performance in recombinant xylose-utilizing Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 82: 123-130. https://doi.org/10.1007/s00253-008-1773-y
  34. Saloheimo, A., J. Rauta, and O. V. Stasyk. 2007. Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases. Appl. Environ. Microbiol. 74: 1041-1052
  35. Spencer-Martins, I. and N. van Uden. 1985. Catabolite interconversion of glucose transport systems in the yeast Candida wickerhamii. Biochim. Biophys. Acta. 812, 168-172. https://doi.org/10.1016/0005-2736(85)90535-8
  36. Vardy, E., I. T. Arkin, K. E. Gottschalk, H. R. Kaback, and S. Schuldiner. 2004. Structural conservation in the major facilitator superfamily as revealed by comparative modeling. Protein Sci. 13: 1832-1840. https://doi.org/10.1110/ps.04657704
  37. Weierstall, T., C. P. Hollenberg, and E. Boles. 1999. Cloning and characterization of three genes (SUT1-3) encoding glucose transporters of the yeast Pichia stipitis. Mol. Microbiol. 31: 871-883. https://doi.org/10.1046/j.1365-2958.1999.01224.x
  38. Wieczorke, R., S. Dlugai, S. Krampe, and E. Boles. 2003. Characterisation of mammalian GLUT glucose transporters in a heterologous yeast expression system. Cell Physiol. Biochem. 13, 123-134. https://doi.org/10.1159/000071863