References
- Benz, F., F. Kniisel, J. Nuesch, H. Treichler, W. Voser, R. Nyfeler, and W. Keller-Schierlein. 1974. Stoffwechselprodukte von mikroorganismen echinocandin B, ein neuartiges polypeptid - Antibioticum aus Aspergillus nidulans war. echinulatus: Isolierung und bausteine. Helv. Chim. Acta 57: 2459-2477. https://doi.org/10.1002/hlca.19740570818
- Campbell, I. M., M. A. Gallo, C. A. Jones, P. R. LaSitis, and L. M. Rosato. 1987. Role of cinnamates in benzoate production in Penicillium brevicompacum. Phytochemistry 26: 1413-1415. https://doi.org/10.1016/S0031-9422(00)81824-5
- Cole, R. J., M. A. Schweikert, and B. B. Jarvis. 2003. Handbook of Secondary Fungal Metabolites, 3rd Ed. Academic Press, Amserdam.
- Coy, E. D., L. E. Cuca, and M. Sefkow. 2009. Macrophyllintype bicyclo[3.2.1]octanoid neolignans from the leaves of Pleurothyrium cinereum. J. Nat. Prod. 72: 1245-1248. https://doi.org/10.1021/np9000569
- De Tommasi, N., S. Piacente, F. DeSimone, and C. Pizza. 1996. Constituents of Cydonia vulgaris: Isolation and structure elucidation of four new flavonol glycosides and nine new aionol-derived glycosides. J. Agric. Food Chem. 44: 1676-1681. https://doi.org/10.1021/jf950547a
- Dixon, R. A. and N. L. Paiva. 1995. Stress-lnduced Phenylpropanoid metabolism. Plant Cell 7: 1085-1097.
- Emiliani, G., M. Fondi, R. Fani, and S. Gribaldo. 2009. A horizontal gene transfer at the origin of phenylpropanoid metabolism: A key adaptation of plants to land. Biol. Direct 4: 1-12. https://doi.org/10.1186/1745-6150-4-1
- Ferrer, J. L., M. B. Austin, C. Stewart Jr., and J. P. Noel. 2008. Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol. Biochem. 46: 356-370. https://doi.org/10.1016/j.plaphy.2007.12.009
- Ferrer, J. L., J. M. Jez, M. E. Bowman, R. A. Dixon, and J. P. Noel. 1999. Structure of chalcone synthase and the molecular basis of plant polyketide biosynthesis. Nat. Struct. Biol. 6: 775-784. https://doi.org/10.1038/11553
- Fill, T. P., G. K. Pereira, R. M. G. Santos, and E. Rodrigues-Filho. 2007. Four additional meroterpenes produced by Penicillium sp. found in association with Melia azedarach: Possible biosynthetic intermediates to austin. Z. Naturforsch. 62B: 1035-1044.
- Fill, T. P., R. M. G. Santos, A. Barisson, E. Rodrigues-Filho, and A. Q. L. Souza. 2009. Co-production of bisphenylpropanoid amides and meroterpenes by an endophytic Penicillium brasilianum found in the root bark of Melia azedarach. Z. Naturforsch. 64c: 355-360.
- Frits, R. R., D. S. Hodgins, and C. W. Abell. 1976. Phenylalanine ammonia-lyase. Induction and purification from yeast and cleareance in mammals. J. Biol. Chem. 251: 4646-4650.
- Fujita, T., D. Makishima, K. Akiyama, and H. Hayashi. 2002. New convulsive compounds, brasiliamides A and B, from Penicillium brasilianum Batista JV-379. Biosci. Biotechnol. Biochem. 66: 1697-1705. https://doi.org/10.1271/bbb.66.1697
- Juvvadi, P. R., Y. Seshime, and K. Kitamoto. 2005. Genomics reveals traces of fungal phenylpropanoid-flavonoid metabolic pathway in the filamentous fungus Aspergillus oryzae. J. Microbiol. 43: 475-486.
- Keller-Schierlein, W. and J. Widmer. 1976. Stoffwechselprodukte von mikroorganismen 159. Mitteilung. Uber die aromatishe aminosaure des echinocandins B, 3,4-dihihydroxyhomotyrosin. Helv. Chim. Acta 59: 2021-2031. https://doi.org/10.1002/hlca.19760590615
- Kumada, Y., H. Naganawa, H. Iinuma, M. Matsuzaki, T. Takeuchi, and H. Umezawa. 1976. Dehydrodicaffeic acid dilactone, an inhibitor of catechol-O-methyl transferase. J. Antibiot. 29: 882-889. https://doi.org/10.7164/antibiotics.29.882
- Lee, E. R., G. H. Kang, and S. G. Cho. 2007. Effect of flavonoids on human health: Old subjects but new challenges. Recent Pat. Biotechnol. 1: 139-150. https://doi.org/10.2174/187220807780809445
- Liang, X. W., M. Dron, C. L. Cramer, R. A. Dixon, and C. J. Lamb. 1989. Differential regulation of phenylalanine ammonialyase genes during plant development and by environmental cue. J. Biol. Chem. 264: 14486-14492.
- Ling, K. H., C. K. Yang, and F. T. Peng. 1979. Territrems, tremorgenic mycotoxins of Aspergillus terreus. Appl. Environ. Microbiol. 37: 355-357.
- Mabry, T. J. and A. Ulubelen. 1980. Chemistry and utilization of phenylpropanoids including flavonoids, coumarins, and lignans. J. Agric. Food Chem. 28: 189-196.
- MacDonald, M. J. and G. B. D'Cunha. 2007. A modern view of phenylalanine ammonia lyase. Biochem. Cell Biol. 85: 273-282. https://doi.org/10.1139/O07-018
- Marchelli, R. and L. C. Vining. 1973. Biosynthesis of flavonoid and terphenyl metabolites by the fungus Aspergillus candidus. J. Chem. Soc. Chem. Commun. 555-556.
- Marchelli, R. and L. C. Vining. 1973. The biosynthetic origin of chlorflavonin, a flavonoid antibiotic from Aspergillus candidus. Can. J. Biochem. 51: 1624-1629.
- Massow, F. V. 1977. Incorporation of phenylpropanes into xylerythrin-type pigments in Peniophora sanguinea. Phytochemistry 16: 1695-1698. https://doi.org/10.1016/0031-9422(71)85072-0
- Massow, F. V. and H. E. Noppel. 1977. Biosynthesis of the xylerythrin-type pigments in Peniophora sanguinea. Phytochemistry 16: 1699-1700. https://doi.org/10.1016/0031-9422(71)85073-2
- Moore, B. S., C. Hertweck, J. N. Hopke, M. Izumikawa, J. A. Kalaitzis, G. Nilsen, et al. 2002. Plant-like biosynthetic pathways in bacteria: from benzoic acid to chalcone. J. Nat. Prod. 65: 1956-1962. https://doi.org/10.1021/np020230m
- Naoumkina, M., M. A. Farag, L. W. Sumner, Y. Tang, C. Liu, and R. A. Dixon. 2007. Different mechanisms for phytoalexin induction by pathogen and wound signals in Medicago truncatula. Proc. Natl. Acad. Sci. U.S.A. 104: 17909-17915. https://doi.org/10.1073/pnas.0708697104
- Nuutinen, J. T. and S. Timonen. 2008. Identification of nitrogen mineralization enzymes, L-amino acid oxidases, from the ectomycorrhizal fungi Hebeloma spp. and Laccaria bicolor. Mycol. Res. 112: 1453-1464. https://doi.org/10.1016/j.mycres.2008.06.023
- Pagot, Y., J. Belin, F. Husson, and H. Spinnler. 2007. Metabolism of phenylalanine and biosynthesis of styrene in Penicillium camemberti. J. Dairy Res. 74: 180-185. https://doi.org/10.1017/S0022029906002251
- Parmar, V. S., H. N. Jha, A. K. Gupta, S. Prasad, and A. K. Agamanone. 1992. A flavanone from Agave americana. Phytochemistry 31: 2567-2568. https://doi.org/10.1016/0031-9422(92)83333-T
- Quijano, L., J. S. Calderon, G. F. Gomez, I. E. Soria, and T. Rios. 1980. Highly oxygenated flavanoids from Ageratum corymbosum. Phytochemistry 18: 2439-2442.
- Rani, M. and S. B. Kalidhar. 1996. Trioxygenations sites in the A-ring of naturally occurring flavanones and isoflavanones using 1H NMR spectroscopy. J. Med. Aromatic Plant Sci. 18: 473-476.
- Santos, R. M. G., E. Rodrigues-Filho, W. Caldas Rocha, and M. F. S. Teixeira. 2003. Endophytic fungi from Melia azedarach. World J. Microbiol. Biotechnol. 19: 767-770. https://doi.org/10.1023/A:1026000731189
- Seshime, Y., P. R. Juvvadi, I. Fujii, and K. Kitamoto. 2005. Genomic evidences for the existence of a phenylpropanoid metabolic pathway in Aspergillus oryzae. Biochem. Biophys. Res. Commun. 337: 747-751. https://doi.org/10.1016/j.bbrc.2005.08.233
- Tanaka, Y., N. Sasaki, and A. Ohmiya. 2008. Biosynthesis of plant pigments: Anthocyanins, betalains and carotenoids. Plant J. 54: 733-749. https://doi.org/10.1111/j.1365-313X.2008.03447.x
- Tomoyuki, F. and H. Hideo. 2004. New brasiliamide congeners, brasiliamides C, D and E, from Penicillium brasilianum Batista JV-379. Biosci. Biotechnol. Biochem. 68: 820-826. https://doi.org/10.1271/bbb.68.820
- Turnbull, J. J., J. Nakajima, R. W. D. Welford, M. Y. K. Saito, and C. J. Schofield. 2004. Mechanistic studies on three 2-oxoglutarate-dependent oxygenases of flavonoid biosynthesis: Anthocyanidin synthase, flavonol synthase, and flavanone 3-hydroxylase. J. Biol. Chem. 279: 1206-1216.
- Turner, W. B. and D. C. Aldridge. 1983. Fungal Metabolites II. pp. 594. 1st Ed. Academic Press, London.
- Umezawa, H., H. Tobe, N. Shibamoto, F. Nakamura, K. Nakamura, M. Matsuzaki, and T. Takeuchi. 1975. Isolation of isoflavones inhibiting dopa decarboxylase from fungi and Streptomyces. J. Antibiot. 28: 947-952. https://doi.org/10.7164/antibiotics.28.947
- Vannelli, T., W. W. Qi, J. Sweigard, A. A. Gatenby, and F. S. Sariaslani. 2007. Production of p-hydroxycinnamic acid from glucose in Saccharomyces cerevisiae and Escherichia coli by expression of heterologous genes from plants and fungi. Metabol. Eng. 9: 142-151. https://doi.org/10.1016/j.ymben.2006.11.001
- Ververidis, F., E. Trantas, C. Douglas, G. Vollmer, G. Kretzschmar, and N. Panopoulos. 2007. Biotechnology of flavonoids and other phenylpropanoid-derived natural products. Part I: Chemical diversity, impacts on plant biology and human health. Biotechnol. J. 2: 1214-1234. https://doi.org/10.1002/biot.200700084
- Ververidis, F., E. Trantas, C. Douglas, G. Vollmer, G. Kretzschmar, and N. Panopoulos. 2007. Biotechnology of flavonoids and other phenylpropanoid-derived natural products. Part II: Reconstruction of multienzyme pathways in plants and microbes. Biotechnol. J. 2: 1235-1249. https://doi.org/10.1002/biot.200700184
- Watanabe, S. K., G. Hernandez-Velazco, F. Iturbe-Chinas, and A. Lopez-Mungia. 1992. Phenylalanine ammonia-lyase from Sporidiobolus pararoseus and Rhodosporidium toruloides: Application for phenylalanine and tyrosine deamination. World J. Microbiol. Biotechnol. 8: 406-410. https://doi.org/10.1007/BF01198755
- Weisshaar, B. and G. I. Jenkins. 1998. Phenylpropanoid biosynthesis and its regulation. Curr. Opin. Plant Biol. 1: 251-257. https://doi.org/10.1016/S1369-5266(98)80113-1
- Wenhui, M., M. Xiaolin, Y. Lu, and D. Chen. 2009. Lignans and triterpenoids from the stems of Kadsura induta. Helv. Chim. Acta 92: 709-715. https://doi.org/10.1002/hlca.200800363
- Yadav, R. N. and D. Brasainya. 1977. A novel 8,5'-methylenedioxy 3,7-dihydroxy flavone from seeds of Centratherum anthelminticum Kuntze. J. Instit. Chem. 69: 60-62.
- Yamada, S., K. Nabe, N. Izuo, K. Nakamichi, and I. Chibata. 1981. Production of L-phenylalanine from trans-cinnamic acid with Rhodotorula glutinis containing L-phenylalanine ammonialyase activity. Appl. Environ. Microbiol. 42: 773-778.
Cited by
- Dicitrinol, a Citrinin Dimer, Produced by Penicillium janthinellum vol.94, pp.5, 2010, https://doi.org/10.1002/hlca.201000309
- Endophytic Fungi as a Source of Biofuel Precursors vol.21, pp.7, 2011, https://doi.org/10.4014/jmb.1010.10052
- The Use of Endophytes to Obtain Bioactive Compounds and Their Application in Biotransformation Process vol.2011, pp.None, 2010, https://doi.org/10.4061/2011/576286
- In vitro antioxidant activity and total phenolic content of endophytic fungi isolated from Eugenia jambolana Lam. vol.7, pp.suppl1, 2010, https://doi.org/10.1016/s1995-7645(14)60242-x
- Insights into Penicillium brasilianum Secondary Metabolism and Its Biotechnological Potential vol.22, pp.6, 2017, https://doi.org/10.3390/molecules22060858
- Penicillium setosum , a new species from Withania somnifera (L.) Dunal vol.10, pp.1, 2010, https://doi.org/10.1080/21501203.2018.1555868
- Piperazine ring formation by a single-module NRPS and cleavage by an α-KG-dependent nonheme iron dioxygenase in brasiliamide biosynthesis vol.104, pp.14, 2010, https://doi.org/10.1007/s00253-020-10678-w
- Diversity, Chemical Constituents, and Biological Activities of Endophytic Fungi Isolated From Ligusticum chuanxiong Hort vol.12, pp.None, 2010, https://doi.org/10.3389/fmicb.2021.771000
- Pharmacological Potential of Fungal Endophytes Associated with Medicinal Plants: A Review vol.7, pp.2, 2010, https://doi.org/10.3390/jof7020147