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Biosynthetic studies on brasiliamides, potently convulsive
and bacteriostatic compounds from an endophytic Penicillium
brasilianum isolated from Melia azedarach (Meliaceae),
confirms their phenylpropanoid origin, which is very
uncommon in fungi. Feeding experiments with [2-"C]-
phenylalanine indicated the incorporation of two units of
this amino acid on brasiliamide structures. The first step
in the phenylpropanoid pathway to those compounds was
evaluated through enzymatic bioassays and confirmed the
phenylalanine ammonia-lyase (PAL) participation. The
metabolism of phenylalanine in this fungus is discussed.
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Cumarins and lignans are typical phenylpropanoid compounds,
formed respectively of one and two phenylalanine units
[20]. The enzyme phenylalanine ammonia-lyase (PAL)
converts the amino acid phenylalanine to cinnamic acid, the
basic C4—C; carbon skeleton present in these compounds,
in a key enzymatic process in the phenylpropanoid pathway
[20, 44). The cinnamic acid may incorporate a triketide
(Cy) by the action of chalcone synthase (CHS), forming the
flavonoids, one of the most abundant and diverse class of
natural products [9, 37]. Phenylpropanoids are considered
to be plant-specific secondary metabolites [41]. The
expression of the enzyme PAL, the entry point of the
phenylpropanoid pathway, has often been reported as a
plant response against invading microorganisms, indicating
that phenylpropanoid may act as phytoalexins [18, 27].
Although heterologous gene expressions lead some
bacteria to produce flavonoids [40, 42], the phenylpropanoid
biosynthetic pathway has not been found to be naturally
expressed in microorganisms. Recently, the presence of
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genes encoding the core enzymes of the phenylpropanoid
pathway in the fungus Aspergillus oryzae was detected
[14,34]. However, these genes are silenced and no
phenylpropanoid compounds are produced by this Aspergillus.
A bacterial route to benzoate via PAL was shown to occur
in Streptomyces, but leading to flaviolin and its analogs
[26] instead of phenylpropanoids. There are some reports
of cinnamates in filamentous fungi, but their origin (wWhether
they are truly fungi metabolites) appears to be doubtful.
One of the first fungi bis-phenylpropanoid compounds
reported was the bis-lactone of dihydrocaffeic acid isolated
from Inonotus sp. [16]. Flavonoids were obtained from extracts
of Aspergillus species [22, 23, 39], but these compounds
may have originated from the soy-based cultivation medium
used to grow the fungus. The biosynthetic route leading
to bis-phenylbenzoquinone and related pigments and
cyclopeptide compounds appears to be an important way
for the accumulation of amino acids by fungi secondary
metabolism [38], but apparently without the involvement
of PAL producing cinnamates as intermediates.

The biosynthesis of phenylpropanoid compounds has
received widespread interest, mainly because they have
various important biological activities [17], are useful as
pigments [35], and are involved in many ecological contexts
since they are often related to biotic (e.g., microorganism
infection) and abiotic (e.g., temperature, pH) stress induction
in plants [6, 21]. Moreover, PAL is one of the few
nonhydrolytic enzymes that have important commercial
applications [21], being useful for the production of L-
phenylalanine (L-Phe) from tramns-cinnamic acid through
the reverse physiological reaction [47]. In addition, PAL is
effective in the treatment of certain mouse tumors [12] and
useful in quantitative analysis of serum L-Phe in monitoring
patients with phenylketonuria [43].

During our continued studies on the biochemistry of plant—
microbe consortiums, we have investigated the compounds
produced by an endophytic Penicillium brasilianum isolated
from Melia azedarach (Meliaceae) [10, 11, 33]. The known



brasiliamides A (1) and B (2), and a new brasiliamide N-
oxide, named brasiliamide F (6) [11] (Fig. 1), were isolated
and structurally characterized. Compounds 1 and 2 were
also previously isolated along with brasiliamides C—E
(3-5) by Fujita et al. [13,36] from a soil-collected P
brasilianum strain. Analyses of the brasiliamides molecular
structures indicated that they are apparently biosynthesized
from two phenyalanine units, which is uncommon in
fungi. In the present work, the biosyntheses of these
brasiliamides were investigated through the addition of
labeled L-phenylalanine in the culture medium. Extraction
and bioassays with PAL were also conducted in order to
investigate the possibility of phenylpropanoid pathway
occurrence in the fungus metabolism.

MATERIALS AND METHODS

Materials

The fungus Penicillium brasilianum was isolated from root bark of
Melia azedarach following the procedure described by Santos er al.
[33], and is deposited at Laboratorio de Bioquimica Micromolecular
de Microorganismos in S0 Carlos, Brazil.

Instruments and Reagents

Low-resolution ESI/'MS and ESI/MS/MS data were acquired in
positive-ion mode, using a Micromass Quattro-LC instrument equipped
with an ESI/APCIL “Z-spray” ion. This mass spectrometer was
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coupled with a Waters HPLC (Alliance 2695) equipped with PDA
detector (Alliance 2996) for the analysis. \H and ;C NMR
experiments were recorded on a Bruker DRX-400 spectrometer with
deuteron chloroform (CDCl,) as the solvent and TMS as the internal
standard. [2-"C]-phenylalanine and all other reagents were purchased
from Sigma.

Penicillium brasilianum Cultivation and Feeding Experiments
The strain was cultivated on dextrose—potato agar (PDA) slants at
25°C. The inoculum was prepared by suspending spores from 7-day
cultures in water to a density of 107 spores/ml. The inoculum of
Penicillium brasilianum was transferred under sterile conditions to 5
of 8 Erlenmeyer flasks containing sterilized chemicaily defined
medium (Czapek) developed in previous studies [12], which contained
glucose, 80.0g; NH,NO,, 0.48 g; K.HPO,, 5.0g; MgSO,, 1.0g;
CuSO,, 0.015 g; ZnSOQ,, 0.161 g; MnSO,, 0.01 g; FeSO, 7TH,0, 0.1 g;
and (NH,),Mo0,, 0.1 g; per liter of distilled water. The other 3 flasks
were kept for control purposes. The initial pH of the medium was
adjusted to 6.5. Feeding experiments were performed with use of
[2-"C]-phenylalanine (99% "*C). The precursor was added to the
fungal culture before inoculation into the growth media. The final
concentration of labeled phenylalanine was 1 mg/mi for each
experiment. After fermentation of more than 15 days, the mycelium
was separated from the culture medium and extracted with ethanol
(150 ml). The ethanol extracts were dried to yield the crude isotopically
labeled extract (321.0 mg). Purification of brasiliamide A (1) was
performed by column chromatography in a column (diameter, 25 mm)
packed with silica gel (70-230 Mesh). Brasiliamide A was eluted
with 250 ml of a hexane:ethyl acetate (9:1) mixture. The yield of the
vacuum-dried, high-purity brasiliamide A was 1.5 mg.
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Fig. 1. Chemical structure of brasiliamides produced by the endophytic P. brasilianum isolate (1, 2, and 6), and those originated from

the soil strain (3, 4, and 5) [13, 36].
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Phenylalanine Ammmonia-Lyase Activity

The fungus Penicillium brasilianum was cultivated for 3 days under
static conditions on Czapek medium enriched with 2% of yeast
extract, as described previously. The enzymatic activity was measured
in two different environments, first using the filtrate (to check if it is
a excreted enzyme) and then using the mycelium resuspended in a
poor medium (buffer solution) containing Tris-HCl buffer, pH 8.8.
The specific substrate for PAL (r-phenylalanine - 2.5 mM) was
added to both assays. After 30 min of reaction, an aliquot of 5 ml of
the filtrate mixture and the resuspended mycelium were collected
and added to 5 ml of HCI (0.1 M) to stop the reaction. The desired
product, cinnamic acid, was extracted with 5 ml of alcohol reagent
and monitorated by HPLC/UV analyses.

LC/MS/MS Analyses

A LUNA CI18 (Phenomenex) HPLC column (250x4.60 mm, 5
particle size) was used for sample separation. The HPLC mobile
phase flow rate was set at 0.70 ml/min, using linear gradient elution
with acetonitrile and water, for 45 min. In both eluents, 0.1% TFA
(trifluoroacetic acid) was added. In the ESI/MS analyses, the
capillary voltage was 3.88 kV and the cone voltage was 11 V. In the
collision cell, argon was used as the collision gas at a collision
energy of 10 eV and a CID pressure of 1.3x10 mbar. The ion source
temperature was held at 50°C.

RESULTS

The "°C isotopically labeled phenylalanine (2->C-Phe) was
added to the Czapek’s medium used to grow the fungus P
brasilianum in order to investigate the incorporation of this
amino acid into brasiliamides. After 15 days of inoculation,
the fungus was harvested by filtration under reduced
pressure and the amides were extracted from the mycelium
using ethanol. Brasiliamide A, the major brasiliamide
accumulated in the extract, was monitored for *C-Phe
. incorporation using LC/UV/MS/MS and “C NMR
spectroscopy. Brasiliamide A was detected in both
experiment (°C-Phe added) and control (only fungus in
the basic Czapek’s medium) EtOH extracts as clear
chromatographic peaks with identical retention time and
UV spectra compared with the brasiliamide A standard.
The positive-ion ESI full-scan mass spectrum of brasiliamide
A in the control cultivation contained a prominent peak at
m/z 439 ([M+H]"), which corresponds to the molecular
formula C,,H,sN,O,. A sodium adduct ((M+Na]") was also
detected at m/z 461 (Fig. 2). The MS spectrum obtained
from the extract of the experiment (‘°C-Phe added)
contained peaks at m/z 441 and 463 in addition to 439 and
461, previously ascribed to [M+H]" and [M+Na]" of the
standard brasiliamide A (Fig. 2). The mass shift of these
two units is probably due to incorporation of two labeled
phenylalanines into brasiliamide A. The product ion
spectra of both precursor ions m/z 439 and 441 ([M+H]"
and [*M+H]" respectively) were also very similar, with the
most abundant product ions also showing a 2 Da shift

100

[M+Na]*

1B00 4757
[M+Na]*
[M+H]" s
. . [*M+Na]*
ES [*M+H] 4775
doal g6 oge 527.6 5336
3946 : W
0 400 420 440 460 480 500 520 540m/z

Fig. 2. Full-scan mass spectra of brasiliamide A for control
extract (A) and for "*C-labeled compounds in EtOH extract (B).

pattern (Fig. 3). These fragmentations correspond to loss
of one acetamide (59 Da) and a ketene (42 Da), both from
N-acetyl groups, to form the peaks at m/z 380/382 (1d) and
338/340 (1e), respectively (Scheme 2). Therefore, these
two ions contain the two phenylalanine units, and the 2 Da
mass shifts confirm the incorporation of two *C-Phe into
brasiliamide A.

Labeled brasiliamide A was then purified using preparative
scale atmospheric pressure chromatography and analyzed
by C NMR spectroscopy, in order to confirm the mass
spectral analysis and to determine the "C-enriched position.
An extensive analysis of the NMR data of brasiliamide A
was previously performed using 'H{”C} and 'H{"N}
HSQC and HMBC 2D spectra, to assure chemical shift
ascriptions [11]. Although only a small sample of the
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Fig. 3. Product ion mass spectra of [M+H]" precursor ions
generated from unlabeled brasiliamide A (A) and brasiliamide A
isolated from labeled extract (B).
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Fig. 4. "C NMR spectra obtained for brasiliamide A (A) and "*C-enriched brasiliamide A (B).

Signals labeled with “X” are due to impurities.

labeled compound was used to acquire C NMR data, and
two prominent signals were clearly detected at § 122.6 and
206.8 (Fig. 4B), which corresponded respectively to C-2
and C-2' in brasiliamide A (Fig. 4A) [11]. This is in
complete agreement with the interpretation of the MS data
and confirms that two 2-"C-Phe were incorporated into
brasiliamide A, the major brasiliamide produced by this
Penicillium. Minor brasiliamides B (2) and F (6) were also
shown to incorporate 2-"C-Phe, when analyzed by mass
spectrometry (Fig. 5).

As stated before, bis-phenylpropanoid compounds are
usually formed after phenylalanine molecules have been
deaminated by PAL. Then, since the two C,—C; units are
present in brasiliamides, enzymatic experiments were
performed in order to verify the possibility of PAL activity
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Fig. 5. Chromatograms of product ions generated from
precursors of m/z 425 (’C-labeled brasiliamide B), 441("C-
labeled brasiliamide A), and 413 (“C-labeled brasiliamide F)
found in labeled extract.

in P. brasilianum. Enzyme extracts were obtained from
growing cells after fungus cultivation in Czapek’s medium.
Thus, incubation of L-phenylalanine in these enzymatic
extracts led to production of cinnamic acid, which was
directly identified using LC/MS. It was observed that the
enzyme was able to convert the substrate in a short time
after incubation, which shows how active this enzyme is
during the fungus development.

DISCUSSION

The brasiliamides A and B (1 and 2) produced by our
endophytic isolate of P brasilianum [11] are identical to
those found by Fujita ef al. in their soil isolate [13, 36].
What these compounds have in common are the presence
of two aromatic rings, one of them with no substituent and
the other being a methoxypiperonyl partial structure, and
at least one N-acetyl group, which characterize them as
amides. Although in all of these molecules the aromatic
rings are bonded to a C; side chain, only in brasiliamide F
(6) is an intact phenylalanine unit (8) promptly identified
(Fig. 1). A retro-synthetic analysis on brasiliamide F
(Scheme 1) indicates that the phenylalanine is connected to
a more drastically modified C;—C; (7), which can also
originate from another phenylalanine unit, probably with
the carboxyl group reduced to an aldehyde (Z corresponding
to C=0).

In the present work, it was demonstrated that brasiliamides
are biosynthetized by P. brasilianum using two Phe units
and that cinnamic acid is produced when Phe is incubated
with an enzymatic extract obtained from this fungus,
indicating that PAL is active in this extract and probably
participates in brasiliamides biosynthesis. The six brasiliamides



626 Filletal

(I)H
o N__oO
L0 =
o N
-
o /J\) 6

Scheme 1. Retro-synthetic analysis of brasiliamide F (6).

known so far (Fig. 1) have many structural features in
common. With the exception of brasiliamide F (6), in all of
the other congeners (1-5), the carboxyl carbon (C-1) of
the Phe precursor unit is reduced and aminated. Therefore,
a reductive amination in a cinnamaldehyde (11), followed
by alternating oxidation and reduction steps, may occur
to produce two 1-aryl-3-amino-2-propanone (17) units
(Scheme 3), which are putative key intermediates to
brasiliamides 1-5. The coupling of these two aminopropanones
is very much expected, in the organic chemistry point of
view (Scheme 4), to form compounds 1—6. The formation
of the enamine function present in brasiliamides A, B, C,
and F occurs during the dehydration of the unstable
intermediate 20 in this scheme, and this is compatible with
the presence of the C—C double bonds at A'® in 1, 2, and
6, and at A°” in 3. Only two further N-acetylation steps in
21 are necessary to form brasiliamide A (1). Thus, Schemes
3 and 4 are in complete agreement with the "°C isotopic
labeling experiment. Further cyclization of the aminoketone

le: m/z 338/340

Scheme 2. Fragmentation mechanism suggested for brasiliamide A.
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21 in Scheme 4, followed by reductions and N-acetylation,
can lead to the natural products 2-5.

The presence of 1-aryl-3-amino-2-propanone partial
structures (18 and 19 in Scheme 4) is rare in natural secondary
metabolites. An Aspergillus species has shown to accumulate
1-(4-hydroxyphenyl)-3-amino-2-propanone [1, 15], being
one of the very few examples. Another expressive structural
feature in these brasiliamides is the presence of a 3-
methoxy-4,5-methylenedioxyphenyl (methoxypiperonyl)
group. The classes of natural products in which the
methoxypiperonyl group is most frequently found are the
lignoids (lignans and neolignans) [4, 45] and some flavonoids
[3, 5,31, 32,46], being typical plant phenylpropanoids,
although a huge number of synthetic compounds contains
this group. It appears that the only fungal metabolites
containing the methoxypiperonyl as a partial structure are
the brasiliamides (Fig. 1); the PF118 compounds produced
by Chrysosporium, which are three complex antitumor
amides [36]. CODEN: JKXXAF JP 2001139577 A 20010522
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Scheme 3. Redutive amination and isomerization of phenylalanine producing 1-aryl-3-amino-2-propanone precursors of brasiliamides.

CAN 134:352364 AN 2001:366097 CAPLUS]; and the
tremorgenic toxins territrems A and B produced by A.
terreus [9], which seem to contain a cinnamic acid
derivative, with the aromatic ring being a methoxypiperonyl,
incorporated in a terpenoyl carbon chain. In plants, many
typical enzymes of the phenylpropanoid pathway (e.g.,
cinnamate 4-hydroxylase, 4-coumarate CoA ligase, caffeic
acid/5-hydroxyferulic acid O-methyltransferase, efc.) act
on phenylalanine to produce synapate [8], which is further
oxidized to form the methoxypiperonyl. Thus, brasiliamides
have many similarities with plant bis-phenylpropanoids
biosynthesis and represent a special fungal metabolism of
phenylalanine.

The most frequent ways followed by fungi to incorporate
unmodified phenylalanine structures in its metabolites are
the production of cyclopeptides and depsipeptides, besides
construction of protein [3]. The deamination in phenylalanine/
tyrosine leading to diphenylbenzoquinones and related
pigments in fungi appears to occur via another enzymatic
process producing 2-hydroxycinnamates as first intermediates
{24, 25]. In an overall view, it appears that the phenylpropanoid
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pathway in plants is used to produce larger molecules from
phenylalanine, resulting in secondary metabolites that may
mediate their biotic (microbes, insects, efc.) and abiotic
(mainly UV light) environmental interactions [8, 37, 41,
44]. On the other hand, in fungi, generally this metabolic
pathway appears to be shorter and the initial biosynthetic
step mvolves oxidizing enzymes that degrade phenylpropanoid
precursors [28] back to smaller molecules such as benzoates
and styrene, like some Penicillium species do [2, 29].
Thus, it seems that the phenylpropanoid pathway is an
important biochemistry field of battle for survival. A very
interesting theory was recently developed, which indicates
that the land plants would have acquired the ability to
produce phenylpropanoid compounds from microbes via
horizontal gene transfer (HGT) encoding the PAL enzyme
[7]. During their evolution, many microorganisms appear
to have kept these metabolic abilities to defend themselves
and be able to associate with plants controlling their
chemical responses during colonization. Perhaps the
biosynthesis of brasiliamides represents a new strategy
developed by the fungus P. brasilianum to be accepted by
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Scheme 4. Coupling of two 1-aryl-3-amino-2-propanones to produce brasiliamide A.
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Melia azedarch as it host plant. Experiments to verify this
hypothesis must be designed and tested.
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