References
-
Auvinen, H., L. M. Nevatalo, A. H. Kaksonen, and J. A. Puhakka. 2009. Low temperature (
${9^{\circ}C}$ ) AMD treatment in a sulfidogenic bioreactor dominated by a mesophilic Desulfomicrobium species. Biotechnol. Bioeng. 104: 740-751. - Bijmans, M. F. M., M. Dopson, F. Ennin, P. N. L. Lens, and C. J. N. Buisman. 2008. Effect of sulfide removal on sulfate reduction at pH 5 in a hydrogen fed gas-lift bioreactor. J. Microbiol. Biotechnol. 18: 1809-1818.
- Buisman, C. J. N., J. Huisman, H. Dijkman, and M. F. M. Bijmans. 2007. Trends in application of industrial sulfate reduction for sulfur and metal recycling, pp. 383-387. Proceedings of European Metallurgical Conference, 11-14 June 2007, Dusseldorf, Germany.
- Esener, A. A., J. A. Roels, and N. W. F. Kossen. 1983. Theory and applications of unstructured growth models: Kinetic and energetic aspects. Biotech. Bioeng. XXV: 2803-2841.
-
Esposito, G., J. Weijma, F. Pirozzi, and P. N. L. Lens. 2003. Effect of the sludge retention time on
$H_{2}$ utilization in a sulfate reducing gas-lift reactor. Process Biochem. 39: 491-498. https://doi.org/10.1016/S0032-9592(03)00131-6 - Franzmann, P. D., C. M. Haddad, R. B. Hawkes, W. J. Robertson, and J. J. Plumb. 2005. Effects of temperature on the rates of iron and sulfur oxidation by selected bioleaching Bacteria and Archaea: Application of Ratkowsky equation. Miner. Eng. 18: 1304-1314. https://doi.org/10.1016/j.mineng.2005.04.006
- van Houten, R. T., L. W. Hulshoff Pol, and G. Lettinga. 1994. Biological sulfate reduction using gas-lift reactors fed with hydrogen and carbon dioxide as energy and carbon source. Biotechnol. Bioeng. 44: 586-594. https://doi.org/10.1002/bit.260440505
- van Houten, R. T., H. van der Spoel, A. C. van Aelst, L. W. Hulshoff Pol, and G. Lettinga. 1996. Biological sulfate reduction using synthesis gas as energy and carbon source. Biotechnol. Bioeng. 50: 136-144. https://doi.org/10.1002/(SICI)1097-0290(19960420)50:2<136::AID-BIT3>3.0.CO;2-N
- van Houten, B. H. G. W., K. Roest, V. A. Tzeneva, H. Dijkman, H. Smidt, and A. J. M. Stams. 2006. Occurrence of methanogenesis during start-up of a full-scale synthesis gas-fed reactor treating sulfate and metal-rich wastewater. Water Res. 40: 553-560. https://doi.org/10.1016/j.watres.2005.12.004
- Huisman, J. L., G. Schouten, and C. Schultz. 2006. Biologically produced sulphide for purification of process streams, effluent treatment and recovery of metals in the metal and mining industry. Hydrometallurgy 83: 106-113. https://doi.org/10.1016/j.hydromet.2006.03.017
- Isaksen, M. F. and B. B. Jorgensen. 1996. Adaptation of psychrophilic and psychrotrophic sulfate-reducing bacteria to permanently cold marine environments. Appl. Environ. Microb. 62: 408-414.
- Isaksen, M. F. and A. Teske. 1996. Desulforhopalus vacuolatus gen. nov., sp. nov., a new moderately psychrophilic sulfatereducing bacterium with gas vacuoles isolated from a temperate estuary. Arch. Microbiol. 166: 160-168. https://doi.org/10.1007/s002030050371
- Kaksonen, A. H. and J. A. Puhakka. 2007. Review: Sulfate reduction based bioprocesses for the treatment of acid mine drainage and the recovery of metals. Eng. Life Sci. 7: 541-564. https://doi.org/10.1002/elsc.200720216
- Kaksonen, A. H., P. D. Franzmann, and J. A. Puhakka. 2004. Effects of hydraulic retention time and sulfide toxicity on ethanol and acetate oxidation in sulfate-reducing metal-precipitating fluidized-bed reactor. Biotech. Bioeng. 86: 332-343. https://doi.org/10.1002/bit.20061
- Kawazuishi, K. and J. M. Prausniz. 1987. Correlation of vapor-liquid equilibria for the system ammonia-carbon dioxide-water. Ind. Chem. Eng. Res. 26: 1482-1485. https://doi.org/10.1021/ie00067a036
- Knoblauch, C. and B. B. Jorgensen. 1999. Effect of temperature on sulfate reduction, growth rate and growth yield in five psychrophilic sulfate-reducing bacteria from Arctic sediments. Environ. Microbiol. 1: 457-467. https://doi.org/10.1046/j.1462-2920.1999.00061.x
- Kotsyurbenko, O. R., A. N. Nozhevnikova, T. I. Soloviova, and G. A. Zavarzin. 1996. Methanogenesis at low temperature by microflora of tundra wetland soil. Antonie Van Leeuwenheek 69: 75-86. https://doi.org/10.1007/BF00641614
- Nauhaus, K., M. Albrecht, M. Elvert, A. Boetius, and F. Widdel. 2007. In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate. Environ. Microbiol 9: 187-196. https://doi.org/10.1111/j.1462-2920.2006.01127.x
- Ratkowsky, D. A., R. K. Lowry, T. A. McMeekin, A. N. Stokes, and R. E. Chandler. 1983. Model of bacterial culture growth rate throughout the entire biokinetic temperature range. J. Bacteriol. 154: 1222-1226.
-
Sahinkaya, E., B. Ozkaya, A. H. Kaksonen, and J. A. Puhakka. 2007. Sulfidogenic fluidized-bed treatment of metal-containing wastewater at 8 and
${65^{\circ}C}$ is limited by acetate oxidation. Water Res. 41: 2796-2714. - SFS Finnish Standards Association. 1990. SFS 3008: Determination of total residue and total fixed residue in water, sludge and sediment. Helsinki, Finland Finnish Standards Association.
-
Sipma, J., R. J. W. Meulepas, S. N. Parshina, A. J. M. Stams, G. Lettinga, and P. N. L. Lens. 2004. Effect of carbon monoxide, hydrogen and sulfate on thermophilic (
${55^{\circ}C}$ ) hydrogenotrophic carbon monoxide conversion in two anaerobic bioreactor sludges. Appl. Microbiol. Biotech. 64: 421-428. https://doi.org/10.1007/s00253-003-1430-4 - Weijma, J., A. J. M. Stams, L. W. Hulshoff Pol, and G. Lettinga. 2000. Thermophilic sulfate reduction and methanogenesis with methanol in a high rate anaerobic reactor. Biotech. Bioeng. 67: 354-363. https://doi.org/10.1002/(SICI)1097-0290(20000205)67:3<354::AID-BIT12>3.0.CO;2-X
-
Weijma, J., F. Gubbels, L. W. Hulshoff Pol, A. J. M. Stams, P. N. L. Lens, and G. Lettinga. 2002. Competition for
$H_{2}$ between sulfate reducers, methanogens and homoacetogens in a gas-lift reactor. Water Sci. Technol. 45: 75-80. - Widdel, F. 1987. New types of acetate-oxidizing sulfate-reducing Desulfobacter species, D. hydrogenophilus sp. nov., D. latus sp. nov., and D. curvatus sp. nov. Arch. Microbiol. 148: 286-291. https://doi.org/10.1007/BF00456706
Cited by
- Treatment of simulation of copper-containing pit wastewater with sulfate-reducing bacteria (SRB) in biofilm reactors vol.75, pp.19, 2010, https://doi.org/10.1007/s12665-016-6108-1
- Geochemical Effects of Millimolar Hydrogen Concentrations in Groundwater: An Experimental Study in the Context of Subsurface Hydrogen Storage vol.52, pp.8, 2018, https://doi.org/10.1021/acs.est.7b05467
- Biological Sulfate Reduction Using Gaseous Substrates To Treat Acid Mine Drainage vol.6, pp.4, 2010, https://doi.org/10.1007/s40726-020-00160-6