DOI QR코드

DOI QR Code

Comparative Study on Characterization of Recombinant B Subunit of E. coli Heat-Labile Enterotoxin (rLTB) Prepared from E. coli and P. pastoris

  • Ma, Xingyuan (State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology) ;
  • Yao, Bi (State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology) ;
  • Zheng, Wenyun (State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology) ;
  • Li, Linfeng (State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology)
  • Received : 2009.11.02
  • Accepted : 2009.11.16
  • Published : 2010.03.31

Abstract

Escherichia coli (E. coli) heat-labile enterotoxin B subunit (LTB) was regarded as one of the most powerful mucosal immunoadjuvants eliciting strong immunoresponse to coadministered antigens. In the research, the high-level secretory expression of functional LTB was achieved in P. pastoris through high-density fermentation in a 5-1 fermentor. Meanwhile, the protein was expressed in E. coli by the way of inclusion body, although the gene was cloned from E. coli. Some positive yeast and E. coli transformants were obtained respectively by a series of screenings and identifications. Fusion proteins LTB-6$\times$His could be secreted into the supernatant of the medium after the recombinant P. pastoris was induced by 0.5% (v/v) methanol at $30^{\circ}C$, whereas E. coli transformants expressed target protein in inclusion body after being induced by 1 mM IPTG at $37^{\circ}C$. The expression level increased dramatically to 250-300 mg/l supernatant of fermentation in the former and 80-100 mg/l in the latter. The LTB-6$\times$His were purified to 95% purity by affinity chromatography and characterized by SDS-PAGE and Western blot. Adjuvant activity of target protein was analyzed by binding ability with GMI gangliosides. The MW of LTB-6$\times$His expressed in P. pastoris was greater than that in E. coli, which was equal to the expected 11 kDa, possibly resulted from glycosylation by P. pastoris that would enhance the immunogenicity of co-administered antigens. These data demonstrated that P. pastoris producing heterologous LTB has significant advantages in higher expression level and in adjuvant activity compared with the homologous E. coli system.

Keywords

References

  1. Amin, T. and T. R. Hirst. 1994. Purification of the B-subunit oligomer of Escherichia coli heat-labile enterotoxin by heterologous expression and secretion in a marine vibrio. Protein Expr. Purif. 5: 198-204. https://doi.org/10.1006/prep.1994.1031
  2. Cregg, J. M., J. F. Tschopp, C. Stillman, R. Siegel, M. Akong, W. S. Craig, et al. 1987. High-level expression and efficient assembly of hepatitis B surface antigen in the methylotrophic yeast, Pichia pastoris. BioTechnology 5: 479-485. https://doi.org/10.1038/nbt0587-479
  3. Cregg, J. M., T. S. Vedvick, and W. C. Raschke. 1993. Recent advances in the expression of foreign genes in Pichia pastoris. BioTechnology 11: 905-910. https://doi.org/10.1038/nbt0893-905
  4. de Haan, L., W. R. Verweij, I. K. Feil, M. Holtrop, W. G. Hol, E. Agsteribbe, and J. Wilschut. 1998. Role of GM1 binding in the mucosal immunogenicity and adjuvant activity of the Escherichia coli heat-labile enterotoxin and its B subunit. Immunology 94: 424-430. https://doi.org/10.1046/j.1365-2567.1998.00535.x
  5. Douce, G., M. Fontana, M. Pizza, R. Rappuoli, and G. Dougan. 1997. Intranasal immunogenicity and adjuvanticity of sitedirected mutant derivatives of cholera toxin. Infect. Immun. 65: 2821-2828.
  6. Douce, G., C. Turcotte, I. Cropley, M. Roberts, M. Pizza, M. Domenghini, R. Rappuoli, and G. Dougan. 1995. Mutants of Escherichia coli heat-labile toxin lacking ADP-ribosyltransferase activity act as nontoxic, mucosal adjuvants. Proc. Natl. Acad. Sci. U.S.A. 92: 1644-1648. https://doi.org/10.1073/pnas.92.5.1644
  7. Feil, I. K., R. Reddy, L. de Haan, E. A. Merritt, F. van den Akker, D. R. Storm, and W. G. Hol. 1996. Protein engineering studies of A-chain loop 47-56 of Escherichia coli heat-labile enterotoxin point to a prominent role of this loop for cytotoxicity. Mol. Microbiol. 20: 823-832. https://doi.org/10.1111/j.1365-2958.1996.tb02520.x
  8. Fingerut, E., B. Gutter, R. Meir, D. Eliahoo, and J. Pitcovski. 2005. Vaccine and adjuvant activity of recombinant subunit B of E. coli enterotoxin produced in yeast. Vaccine 23: 4685-4996. https://doi.org/10.1016/j.vaccine.2005.03.050
  9. Green, E. A., C. Botting, H. M. Webb, T. R. Hirst, and R. E. Randall. 1996. Construction, purification and immunogenicity of antigen-antibody-LTB complexes. Vaccine 14: 949-458. https://doi.org/10.1016/0264-410X(96)00039-4
  10. Holmgren, J., M. Lindblad, P. Fredman, L. Svennerholm, and H. Myrvold. 1985. Comparison of receptors for cholera and Escherichia coli enterotoxins in human intestine. Gastroenterology 89: 27-35.
  11. Isaka, M., T. Komiya, M. Takahashi, Y. Yasuda, T. Taniguchi, Y. Zhao, et al. 2004. Recombinant cholera toxin B subunit (rCTB) as a mucosal adjuvant enhances induction of diphtheria and tetanus antitoxin antibodies in mice by intranasal administration with diphtheria-pertussis-tetanus (DPT) combination vaccine. Vaccine 22: 3061-3068. https://doi.org/10.1016/j.vaccine.2004.02.019
  12. Isaka, M., Y. Yasuda, S. Kozuka, T. Taniguchi, Y. Miura, K. Matano, N. Goto, and K. Tochikubo. 1999. Intranasal or subcutaneous co-administration of recombinant cholera toxin B subunit stimulates only a slight or no level of the specific IgE response in mice to tetanus toxoid. Vaccine 17: 944-948. https://doi.org/10.1016/S0264-410X(98)00280-1
  13. Kozuka, S., Y. Yasuda, M. Isaka, N. Masaki, T. Taniguchi, K. Matano, et al. 2000. Efficient extracellular production of recombinant Escherichia coli heat-labile enterotoxin B subunit by using the expression/secretion system of Bacillus brevis and its mucosal immunoadjuvanticity. Vaccine 18: 1730-1737. https://doi.org/10.1016/S0264-410X(99)00547-2
  14. Ma, X., W. Zheng, T. Wang, D. Wei, and Y. Ma. 2006. Optimization and high-level expression of a functional GSTtagged rHLT-B in Escherichia coli and GM1 binding ability of purified rHLT-B. J. Microbiol. 44: 293-300.
  15. Millar, D. G., T. R. Hirst, and D. P. Snider. 2001. Escherichia coli heat-labile enterotoxin B subunit is a more potent mucosal adjuvant than its closely related homologue, the B subunit of cholera toxin. Infect Immun. 69: 3476-3482. https://doi.org/10.1128/IAI.69.5.3476-3482.2001
  16. Nashar, T. O., H. M. Webb, S. Eaglestone, N. A. Williams, and T. R. Hirst. 1996. Potent immunogenicity of the B subunits of Escherichia coli heat-labile enterotoxin: Receptor binding is essential and induces differential modulation of lymphocyte subsets. Proc. Natl. Acad Sci. U.S.A. 93: 226-230. https://doi.org/10.1073/pnas.93.1.226
  17. Pizza, M., M. M. Giuliani, M. R. Fontana, E. Monaci, G. Douce, G. Dougan, K. H. Mills, R. Rappuoli, and G. Del Giudice. 2001. Mucosal vaccines: Non toxic derivatives of LT and CT as mucosal adjuvants. Vaccine 19: 2534-2541. https://doi.org/10.1016/S0264-410X(00)00553-3
  18. Rezaee, M. A., A. Rezaee, S. M. Moazzeni, A. H. Salmanian, Y. Yasuda, K. Tochikubo, S. N. Pirayeh, and M. Arzanlou. 2005. Expression of Escherichia coli heat-labile enterotoxin B subunit (LTB) in Saccharomyces cerevisiae. J. Microbiol. 43: 354-360.
  19. Richards, C. M., A. T. Aman, T. R. Hirst, T. J. Hill, and N. A. Williams. 2001. Protective mucosal immunity to ocular herpes simplex virus type 1 infection in mice by using Escherichia coli heat-labile enterotoxin B subunit as an adjuvant. J. Virol. 75: 1664-1671. https://doi.org/10.1128/JVI.75.4.1664-1671.2001
  20. Ruitenberg, K. M., J. R. Gilkerson, J. E. Wellington, D. N. Love, and J. M. Whalley. 2001. Equine herpesvirus 1 glycoprotein D expressed in Pichia pastoris is hyperglycosylated and elicits a protective immune response in the mouse model of EHV-1 disease. Virus Res. 79: 125-135. https://doi.org/10.1016/S0168-1702(01)00337-9
  21. Sagt, C. M., B. Kleizen, R. Verwaal, M. D. de Jong, W. H. Muller, A. Smits, et al. 2000. Introduction of an N-glycosylation site increases secretion of heterologous proteins in yeasts. Appl. Environ. Microbiol. 66: 4940-4944. https://doi.org/10.1128/AEM.66.11.4940-4944.2000
  22. Scorer, C. A., J. J. Clare, W. R. McCombie, M. A. Romanos, and K. Sreekrishna. 1994. Rapid selection using G418 of high copy number transformants of Pichia pastoris for high-level foreign gene expression. BioTechnology 12: 181-184. https://doi.org/10.1038/nbt0294-181
  23. Sixma, T. K., S. E. Pronk, K. H. Kalk, E. S. Wartna, B. A. van Zanten, B. Witholt, and W. G. Hol. 1991. Crystal structure of a cholera toxin-related heat-labile enterotoxin from E. coli. Nature 351: 371-377. https://doi.org/10.1038/351371a0
  24. Sreekrishna, K., L. Nelles, R. Potenz, J. Cruze, P. Mazzaferro, W. Fish, et al. 1989. High-level expression, purification, and characterization of recombinant human tumor necrosis factor synthesized in the methylotrophic yeast Pichia pastoris. Biochemistry 28: 4117-4125. https://doi.org/10.1021/bi00435a074
  25. Stoscheck, C. M. 1990. Quantitation of protein. Methods Enz. 182: 50-68. https://doi.org/10.1016/0076-6879(90)82008-P
  26. Takahashi, I., H. Kiyono, R. J. Jackson, K. Fujihashi, H. F. Staats, S. Hamada, J. D. Clements, K. L. Bost, and J. R. McGhee. 1996. Epitope maps of the Escherichia coli heat-labile toxin B subunit for development of a synthetic oral vaccine. Infect. Immun. 64: 1290-1298.
  27. Tschopp, J. F., G. Sverlow, R. Kosson, W. Craig, and L. Grinna. 1987. High-level secretion of glycosylated invertase in the methylotrophic yeast, Pichia pastoris. BioTechnology 5: 1305-1308. https://doi.org/10.1038/nbt1287-1305
  28. Verweij, W. R., L. de Haan, M. Holtrop, E. Agsteribbe, R. Brands, G. J. van Scharrenburg, and J. Wilschut. 1998. Mucosal immunoadjuvant activity of recombinant Escherichia coli heatlabile enterotoxin and its B subunit: Induction of systemic IgG and secretory IgA responses in mice by intranasal immunization with influenza virus surface antigen. Vaccine 16: 2069-2076. https://doi.org/10.1016/S0264-410X(98)00076-0

Cited by

  1. Discovery of the cell-penetrating function of A2 domain derived from LTA subunit of Escherichia coli heat-labile enterotoxin vol.100, pp.11, 2010, https://doi.org/10.1007/s00253-016-7423-x