DOI QR코드

DOI QR Code

High-Level Expression of an Aspergillus niger Endo-$\beta$-1,4-Glucanase in Pichia pastoris Through Gene Codon Optimization and Synthesis

  • Zhao, Shumiao (State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University) ;
  • Huang, Jun (State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University) ;
  • Zhang, Changyi (State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University) ;
  • Deng, Ling (State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University) ;
  • Hu, Nan (College of Life Science and Pharmacy, Nanjing University of Technology) ;
  • Liang, Yunxiang (State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University)
  • 투고 : 2009.08.25
  • 심사 : 2009.10.21
  • 발행 : 2010.03.31

초록

To improve the expression efficiency of recombinant endo-$\beta$-1,4-glucanase in P. pastoris, the endo-$\beta$-1,4-glucanase (egI) gene from Aspergillus niger was synthesized using optimized codons. Fourteen pairs of oligonucleotides with 15 bp overlap were designed and the full-length syn-egI gene was generated by two-step PCR-based DNA synthesis. In the synthesized endo-$\beta$-1,4-glucanase gene syn-egI, 193 nucleotides were changed, and the G+C content was decreased from 54% to 44.2%. The syn-egI gene was inserted into pPIC9K and transformed into P. pastoris GS115 by electroporation. The enzyme activity of recombinant P. pastoris stain 2-7# reached 20.3 U/ml with 1% barley $\beta$-glucan and 3.3 U/ml with 1% carboxymethylcellulose (CMC) as substrates in shake flasks versus 1,270.3 U/ml and 220.7 U/ml for the same substrates in 50-1 fermentors. The molecular mass of the recombinant protein was approximately 40 kDa as determined by SDS-PAGE analysis, the optimal temperature for recombinant enzyme activity was $70^{\circ}C$, and the optimal pH was 5.0 when CMC was used as the substrate.

키워드

참고문헌

  1. Ajithkumar, A., R. Andersson, M. Siika-aho, M. Tenkanen, and P. Aman. 2006. Isolation of cellotriosyl blocks from barley $\beta$-glucan with endo-1,4-$\beta$-glucanase from Trichoderma reesei. Carbohyd. Polym. 64: 233-238. https://doi.org/10.1016/j.carbpol.2005.11.033
  2. Bauer, M. W., L. E. Driskill, W. Callen, M. A. Snead, E. J. Mathur, and R. M. Kelly. 1999. An endoglucanase, EglA, from the hyperthermophilic archaeon Pyrococcus furiosus hydrolyzes $\beta$-1,4 bonds in mixed-linkage (1→3),(1→4)-TEX>$\beta$-D-glucans and cellulose. J. Bacteriol. 181: 284-290.
  3. Beguin, P. and J. P. Aubert. 1994. The biological degradation of cellulose. FEMS Microbiol. Rev. 13: 25-58. https://doi.org/10.1111/j.1574-6976.1994.tb00033.x
  4. Bhat, M. K. 2004. Cellulases and related enzymes in biotechnology. Biotechnol. Adv. 18: 355-383.
  5. Cazemier, A. E., J. C. Verdoes, H. J. M. Op den Camp, J. H. P. Hackstein, and A. J. J. van Ooyen. 1999. A $\beta$-1,4-endoglucanaseencoding gene from Cellulomonas pachnodae. Appl. Microbiol.Biotechnol. 52: 232-239. https://doi.org/10.1007/s002530051514
  6. Chang, S. W., G. C. Lee, and J. F. Shaw. 2006. Codon optimization of Candida rugosa lip1 gene for improving expression in Pichia pastoris and biochemical characterization of the purified recombinant LIP1 lipase. J. Agric. Food Chem. 3: 815-822.
  7. David, M. H. and L. Jacek. 2002. DNAWorks: An automated method for designing oligonucleotides for PCR-based gene synthesis. Nucleic Acids Res. 30: e43 https://doi.org/10.1093/nar/30.10.e43
  8. Dienes, D., A. Egyhazi, and K. Reczey. 2004. Treatment of recycled fiber with Trichoderma cellulases. Ind. Crop. Prod. 20: 11-21. https://doi.org/10.1016/j.indcrop.2003.12.009
  9. Duan, X. Y., S. Y. Liu, W. C. Zhang, Q. X. Zhang, and P. J. Gao. 2004. Volumetric productivity improvement for endoglucanase of Trichoderma pseudokoingii S-38. J. Appl. Microbiol. 96: 772-776. https://doi.org/10.1111/j.1365-2672.2004.02204.x
  10. Feng, Y., C. J. Duan, H. Pang, X. C. Mo, C. F. Wu, Y. Yu, et al. 2007. Cloning and identification of novel cellulase genes from uncultured microorganisms in rabbit cecum and characterization of the expressed cellulases. Appl. Microbiol. Biotechnol. 75: 319-328. https://doi.org/10.1007/s00253-006-0820-9
  11. Hale, R. S. and G. Thompson. 1998. Codon optimization of the gene encoding a domain from human type 1 neurofibromin protein results in a threefold improvement in expression level in Escherichia coli. Protein Expr. Purif. 12: 185-188. https://doi.org/10.1006/prep.1997.0825
  12. Henrissat, B. 1991. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 280: 309-316.
  13. Hong, J., T. Hisanori, A. Shunichi, K. Yamamtot, and H. Kumagai. 2001. Cloning of a gene encoding a highly stable endo-$\beta$-1,4-glucanase from Aspergillus niger and its expression in yeast. J. Biosci. Bioeng. 92: 434-439. https://doi.org/10.1263/jbb.92.434
  14. Hu, S., L. Li, J. Qiao, Y. Guo, L. Cheng, and J. Liu. 2006. Codon optimization, expression, and characterization of an internalizing anti-ErbB2 single-chain antibody in Pichia pastoris. Protein Expr. Purif. 47: 249-257. https://doi.org/10.1016/j.pep.2005.11.014
  15. Huang, H., P. Yang, H. Luo, H. Tang, N. Shao, T. Yuan, Y. Wang, Y. Bai, and B. Yao. 2008. High-level expression of a truncated 1,3-1,4-$\beta$-D-glucanase from Fibrobacter succinogenes in Pichia pastoris by optimization of codons and fermentation. Appl. Microbiol. Biotechnol. 78: 95-103. https://doi.org/10.1007/s00253-007-1290-4
  16. Huang, Y., G. Krauss, S. Cottaz, H. Driguez, and G. Lipps. 2005. A highly acid-stable and thermostable endo-$\beta$-glucanase from the thermoacidophilic archaeon Sulfolobus solfataricus. Biochem. J. 385: 581-588. https://doi.org/10.1042/BJ20041388
  17. Invitrogen: Pichia Expression Kit: A manual of methods for expression of recombinant proteins in Pichia pastoris. Version M. Invitrogen, San Diego, CA, 2002
  18. Kitamoto, N., M. Go, T. Shibayama, T. Kimura, Y. Kito, K. Ohmiya, and N. Tsukagoshi. 1996. Molecular cloning, purification and characterization of two endo-1,4-$\beta$-glucanases from Aspergillus oryzae KBN616. Appl. Microbiol. Biotechnol. 46: 538-544. https://doi.org/10.1007/s002530050857
  19. Lynd, L. R., J. Paul, P. J. Weimer, W. H. van Zyl, and I. S. Pretorius. 2002. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66: 506-577. https://doi.org/10.1128/MMBR.66.3.506-577.2002
  20. Macauley-Patrick, S., M. L. Fazenda, B. McNeil, and L.M. Harvey. 2005. Heterologous protein production using the Pichia pastoris expression system. Yeast 22: 249-270. https://doi.org/10.1002/yea.1208
  21. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  22. Nakamura, Y., T. Gojobori, and T. Ikemura. 1999. Codon usage tabulated from the international DNA sequence database; its status 1999. Nucleic Acids Res. 27: 292. https://doi.org/10.1093/nar/27.1.292
  23. Nikolay, S. O., J. S. Willem, and A. J. Maarten. 2002. Optimization of the expression of equistatin in Pichia pastoris. Protein Expr. Purif. 24: 18-24. https://doi.org/10.1006/prep.2001.1523
  24. Ooi, T., A. Shinmyo, H. Okada, S. Murao, T. Kawaguchi, and M. Arai. 1990. Complete nucleotide sequence of a gene coding for Aspergillus aculeatus cellulase (F1-CMCase). Nucleic Acids Res. 18: 5884. https://doi.org/10.1093/nar/18.19.5884
  25. Palomer, X., E. Dominguez-Puigjaner, M. Vendrell, and I. Llop-Tous. 2004. Study of the strawberry Cel1 endo-(1,4)-glucanase protein accumulation and characterization of its in vitro activity by heterologous expression in Pichia pastoris. Plant Sci. 167: 509-518. https://doi.org/10.1016/j.plantsci.2004.04.017
  26. Peilong, Y., P. Shi, Y. Wang, Y. Bai, K. Meng, H. Luo, T. Yuan, and B. Yao. 2007. Cloning and overexpression of a Paenibacillus $\beta$-glucanase in Pichia pastoris: Purification and characterization of the recombinant enzyme. J. Microbiol. Biotechnol. 17: 58-66.
  27. Rose, S. H. and W. H. van Zyl. 2002. Constitutive expression of the Trichoderma reesei $\beta$-1,4-xylanase gene (xyn2) and the $\beta$-1,4-endoglucanase gene (egI) in Aspergillus niger in molasses and defined glucose media. Appl. Microbiol. Biotechnol. 58: 461-468. https://doi.org/10.1007/s00253-001-0922-3
  28. Sakamoto, S., G. Tamura, K. Ito, T. Ishikawa, K. Iwano, and N. Nishiya. 1995. Cloning and sequencing of cellulase cDNA from Aspergillus kawachii and its expression in Saccharomyces cerevisiae. Curr. Genet. 27: 435-439. https://doi.org/10.1007/BF00311212
  29. Saloheimo, A., B. Henrissat, A. M. Hoffren, O. Teleman, and M. Penttila. 1994. A novel small endoglucanase gene, egl5, from Trichoderma reesei isolated by expression in yeast. Mol. Microbiol. 13: 219-228. https://doi.org/10.1111/j.1365-2958.1994.tb00417.x
  30. Sheppard, P. O., F. J. Grant, P. J. Oort, C. A. Sprecher, D. C. Foster, F. S. Hagen, A. U. Upshall, G. L. McKnight, and P. J. OHara. 1994. The use of conserved cellulase family-specific sequences to clone cellulase homologue cDNAs from Fusarium oxysporum. Gene 150: 163-167. https://doi.org/10.1016/0378-1119(94)90878-8
  31. Shuyan, L., D. Xinyuan, L. Xuemei, and G. Peiji. 2006. A novel thermophilic endoglucanase from a mesophilic fungus Fusarium oxysporum. Chinese Sci. Bull. 51: 191-197. https://doi.org/10.1007/s11434-005-1343-y
  32. Sinclair, G. and F. Y. M. Choy. 2002. Synonymous codon usage bias and the expression of human glucocerebrosidase in the methylotrophic yeast Pichia pastoris. Protein Expr. Purif. 26: 96-105. https://doi.org/10.1016/S1046-5928(02)00526-0
  33. Teather, R. M. and P. J. Wood. 1982. Use of Congo redpolysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl. Environ. Microbiol. 8: 777-780.
  34. Teng, D., Y. Fan, Y. L.Yang, Z. G. Tian, L. Luo, and J. H. Wang. 2007. Codon optimization of Bacillus licheniformis $\beta$-1,3-1,4-glucanase gene and its expression in Pichia pastoris. Appl. Microbiol. Biotechnol. 74: 1074-1083. https://doi.org/10.1007/s00253-006-0765-z
  35. Vervoort, E. B., A. Van Ravestein, N. N. van Peij, J. C. Heikoop, P. J. van Hasstert, G. F. Verheijden, and M. H. Linskens. 2000. Optimizing heterologous expression in Dictyostelium: Importance of 5' codon adaptation. Nucleic Acids Res. 28: 2069-2074. https://doi.org/10.1093/nar/28.10.2069
  36. Xiong, A. S., Q. H. Yao, and R. H. Peng. 2004. A simple, rapid, high-fidelity and cost-effective PCR-based two-step DNA synthesis method for long gene sequences. Nucleic Acids Res. 32: e98. https://doi.org/10.1093/nar/gnh094

피인용 문헌

  1. Cloning, Expression, Purification, and Properties of an Endoglucanase Gene (Glycosyl Hydrolase Family 12) from Aspergillus niger VTCC-F021 in Pichia pastoris vol.21, pp.10, 2010, https://doi.org/10.4014/jmb.1104.04030
  2. Secretory Expression and Purification of the Recombinant Duck Interleukin-2 in Pichia pastoris vol.21, pp.12, 2011, https://doi.org/10.4014/jmb.1106.06057
  3. Characteristics of bifunctional acidic endoglucanase (Cel5B) from Gloeophyllum trabeum vol.39, pp.7, 2010, https://doi.org/10.1007/s10295-012-1110-4
  4. Assembling a cellulase cocktail and a cellodextrin transporter into a yeast host for CBP ethanol production vol.6, pp.None, 2013, https://doi.org/10.1186/1754-6834-6-19
  5. Recombinant Trichoderma harzianum endoglucanase I (Cel7B) is a highly acidic and promiscuous carbohydrate-active enzyme vol.99, pp.22, 2010, https://doi.org/10.1007/s00253-015-6772-1
  6. Cloning and expression of two genes coding endo-β-1,4-glucanases from Trichoderma asperellum PQ34 in Pichia pastoris vol.70, pp.3, 2010, https://doi.org/10.1515/chempap-2015-0210
  7. High-level expression of a biologically active staphylokinase in Pichia pastoris vol.47, pp.4, 2010, https://doi.org/10.1080/10826068.2016.1252924
  8. Constructing a cellulosic yeast host with an efficient cellulase cocktail vol.115, pp.3, 2010, https://doi.org/10.1002/bit.26507
  9. Efficient Expression of Xylanase by Codon Optimization and Its Effects on the Growth Performance and Carcass Characteristics of Broiler vol.9, pp.2, 2010, https://doi.org/10.3390/ani9020065