DOI QR코드

DOI QR Code

Protein Cyclization Enhanced Thermostability and Exopeptidase-Resistance of Green Fluorescent Protein

  • Zhao, Zhonglin (Biotechnology Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Ma, Xin (Biotechnology Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Li, Liang (Biotechnology Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Zhang, Wei (Biotechnology Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Ping, Shuzhen (Biotechnology Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Xu, Ming-Qun (New England Biolabs, Inc.) ;
  • Lin, Min (Biotechnology Research Institute, Chinese Academy of Agricultural Sciences)
  • Received : 2009.08.07
  • Accepted : 2009.10.04
  • Published : 2010.03.31

Abstract

A mutant of green fluorescent protein ($GFPmut3^*$) from the jellyfish Aequorea victoria was cyclized in vitro and in vivo by the use of a naturally split intein from the dnaE gene of Synechocystis species PCC6803 (Ssp). Cyclization of $GFPmut3^*$ was confirmed by amino acid sequencing and resulted in an increased electrophoretic mobility compared with the linear $GFPmut3^*$. The circular $GFPmut3^*$ was $5^{\circ}C$ more thermostable than the linear form and significantly more resistant to proteolysis of exopeptidase. The circular $GFPmut3^*$ also displayed increased relative fluorescence intensity. In addition, chemical stability of $GFPmut3^*$ against GdnHCl revealed more stability of the circular form compared with the linear form.

Keywords

References

  1. Andersen, J. B., C. Sternberg, L. K. Poulsen, S. P. Bjorn, M. Givskov, and S. Molin. 1998. New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl. Environ. Microbiol. 64: 2240-2246.
  2. Cormack, B. P., R. H. Valdivia, and S. Falkow. 1996. FACSoptimized mutants of the green fluorescent protein (GFP). Gene 173: 33-38. https://doi.org/10.1016/0378-1119(95)00685-0
  3. Evans, T. C. Jr., J. Benner, and M. Q. Xu. 1999. The cyclization and polymerization of bacterially expressed proteins using modified self-splicing inteins. J. Biol. Chem. 274: 18359-18363. https://doi.org/10.1074/jbc.274.26.18359
  4. Evans, T. C. Jr., D. Martin, R. Kolly, D. Panne, L. Sun, I. Ghosh, et al. 2000. Protein trans-splicing and cyclization by a naturally split intein from the dnaE gene of Synechocystis species PCC6803. J. Biol. Chem. 275: 9091-9094. https://doi.org/10.1074/jbc.275.13.9091
  5. Grantcharova, V. P. and D. Baker. 2001. Circularization changes the folding transition state of the src SH3 domain. J. Mol. Biol. 306: 555-563. https://doi.org/10.1006/jmbi.2000.4352
  6. Grantcharova, V. P., D. S. Riddle, and D. Baker. 2000. Longrange order in the src SH3 folding transition state. Proc. Natl. Acad. Sci. U.S.A. 97: 7084-7089. https://doi.org/10.1073/pnas.97.13.7084
  7. Hofmann, A., H. Iwai, S. Hess, A. Pluckthun, and A. Wlodawer. 2002. Structure of cyclized green fluorescent protein. Acta Crystallogr. D Biol. Crystallogr. 58: 1400-1406. https://doi.org/10.1107/S0907444902010454
  8. Hruby, V. J. 1982. Conformational restrictions of biologically active peptides via amino acid side chain groups. Life Sci. 31: 189-199. https://doi.org/10.1016/0024-3205(82)90578-1
  9. Iwai, H., A. Lingel, and A. Pluckthun. 2001. Cyclic green fluorescent protein produced in vivo using an artificially split PI-PfuI intein from Pyrococcus furiosus. J. Biol. Chem. 276: 16548-16554. https://doi.org/10.1074/jbc.M011639200
  10. Iwai, H. and A. Pluckthun. 1999. Circular beta-lactamase: Stability enhancement by cyclizing the backbone. FEBS Lett. 459: 166-172. https://doi.org/10.1016/S0014-5793(99)01220-X
  11. Jeffries, C. M., S. C. Graham, P. H. Stokes, C. A. Collyer, J. M. Guss, and J. M. Matthews. 2006. Stabilization of a binary protein complex by intein-mediated cyclization. Protein Sci. 15: 2612-2618. https://doi.org/10.1110/ps.062377006
  12. Jermutus, L., M. Tessier, L. Pasamontes, A. P. van Loon, and M. Lehmann. 2001. Structure-based chimeric enzymes as an alternative to directed enzyme evolution: Phytase as a test case. J. Biotechnol. 85: 15-24. https://doi.org/10.1016/S0168-1656(00)00373-4
  13. Kanno, A., Y. Yamanaka, H. Hirano, Y. Umezawa, and T. Ozawa. 2007. Cyclic luciferase for real-time sensing of caspase 3 activities in living mammals. Angew. Chem. Int. Ed. Engl. 46: 7595-7599. https://doi.org/10.1002/anie.200700538
  14. Lehmann, M., C. Loch, A. Middendorf, D. Studer, S. F. Lassen, L. Pasamontes, A. P. van Loon, and M. Wyss. 2002. The consensus concept for thermostability engineering of proteins: Further proof of concept. Protein Eng. 15: 403-411. https://doi.org/10.1093/protein/15.5.403
  15. Lehmann, M., R. Lopez-Ulibarri, C. Loch, C. Viarouge, M. Wyss, and A. P. van Loon. 2000. Exchanging the active site between phytases for altering the functional properties of the enzyme. Protein Sci. 9: 1866-1872. https://doi.org/10.1110/ps.9.10.1866
  16. Lehmann, M., L. Pasamontes, S. F. Lassen, and M. Wyss. 2000. The consensus concept for thermostability engineering of proteins. Biochim. Biophys. Acta 1543: 408-415. https://doi.org/10.1016/S0167-4838(00)00238-7
  17. Otzen, D. E. and A. R. Fersht. 1998. Folding of circular and permuted chymotrypsin inhibitor 2: Retention of the folding nucleus. Biochemistry 37: 8139-8146. https://doi.org/10.1021/bi980250g
  18. Rodriguez, E., Z. A. Wood, P. A. Karplus, and X. G. Lei. 2000. Site-directed mutagenesis improves catalytic efficiency and thermostability of Escherichia coli pH 2.5 acid phosphatase/phytase expressed in Pichia pastoris. Arch. Biochem. Biophys. 382: 105-112. https://doi.org/10.1006/abbi.2000.2021
  19. Scott, C. P., E. Abel-Santos, M. Wall, D. C. Wahnon, and S. J. Benkovic. 1999. Production of cyclic peptides and proteins in vivo. Proc. Natl. Acad. Sci. U.S.A. 96: 13638-13643. https://doi.org/10.1073/pnas.96.24.13638
  20. Siebold, C. and B. Erni. 2002. Intein-mediated cyclization of a soluble and a membrane protein in vivo: Function and stability. Biophys. Chem. 96: 163-171. https://doi.org/10.1016/S0301-4622(02)00012-1
  21. Thornton, J. M. and B. L. Sibanda. 1983. Amino and carboxyterminal regions in globular proteins. J. Mol. Biol. 167: 443-460. https://doi.org/10.1016/S0022-2836(83)80344-1
  22. Trabi, M. and D. J. Craik. 2002. Circular proteins - no end in sight. Trends Biochem. Sci. 27: 132-138. https://doi.org/10.1016/S0968-0004(02)02057-1
  23. Williams, N. K., E. Liepinsh, S. J. Watt, P. Prosselkov, J. M. Matthews, P. Attard, J. L. Beck, N. E. Dixon, and G. Otting. 2005. Stabilization of native protein fold by intein-mediated covalent cyclization. J. Mol. Biol. 346: 1095-1108. https://doi.org/10.1016/j.jmb.2004.12.037
  24. Williams, N. K., P. Prosselkov, E. Liepinsh, I. Line, A. Sharipo, D. R. Littler, P. M. Curmi, G. Otting, and N. E. Dixon. 2002. In vivo protein cyclization promoted by a circularly permuted Synechocystis sp. PCC6803 DnaB mini-intein. J. Biol. Chem. 277: 7790-7798. https://doi.org/10.1074/jbc.M110303200
  25. Wu, H., Z. Hu, and X. Q. Liu. 1998. Protein trans-splicing by a split intein encoded in a split DnaE gene of Synechocystis sp. PCC6803. Proc. Natl. Acad. Sci. U.S.A. 95: 9226-9231. https://doi.org/10.1073/pnas.95.16.9226
  26. Xu, M. Q. and T. C. Jr. Evans. 2001. Intein-mediated ligation and cyclization of expressed proteins. Methods 24: 257-277. https://doi.org/10.1006/meth.2001.1187
  27. Zhao, Z., W. Lu, B. Dun, D. Jin, S. Ping, W. Zhang, M. Chen, M. Q. Xu, and M. Lin. 2008. Purification of green fluorescent protein using a two-intein system. Appl. Microbiol. Biotechnol. 77: 1175-1180. https://doi.org/10.1007/s00253-007-1233-0

Cited by

  1. Engineering of Metabolic Pathways by Artificial Enzyme Channels vol.3, pp.None, 2010, https://doi.org/10.3389/fbioe.2015.00168
  2. Backbone circularization of Bacillus subtilis family 11 xylanase increases its thermostability and its resistance against aggregation vol.11, pp.12, 2010, https://doi.org/10.1039/c5mb00341e
  3. Locked and proteolysis-based transcription activator-like effector (TALE) regulation vol.44, pp.3, 2010, https://doi.org/10.1093/nar/gkv1541
  4. Intein-mediated backbone cyclization of VP1 protein enhanced protection of CVB3-induced viral myocarditis vol.7, pp.None, 2017, https://doi.org/10.1038/srep41485
  5. Intein-mediated backbone cyclization of entolimod confers enhanced radioprotective activity in mouse models vol.6, pp.None, 2010, https://doi.org/10.7717/peerj.5043
  6. Metabolic engineering of Parageobacillus thermoglucosidasius for the efficient production of (2R, 3R)-butanediol vol.104, pp.10, 2020, https://doi.org/10.1007/s00253-020-10553-8
  7. Designed Streptococcus pyogenes Sortase A Accepts Branched Amines as Nucleophiles in Sortagging vol.31, pp.11, 2020, https://doi.org/10.1021/acs.bioconjchem.0c00486
  8. Development of End-Spliced Dimeric Nanodiscs for the Improved Virucidal Activity of a Nanoperforator vol.13, pp.31, 2010, https://doi.org/10.1021/acsami.1c06364