References
- Andersen, J. B., C. Sternberg, L. K. Poulsen, S. P. Bjorn, M. Givskov, and S. Molin. 1998. New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl. Environ. Microbiol. 64: 2240-2246.
- Cormack, B. P., R. H. Valdivia, and S. Falkow. 1996. FACSoptimized mutants of the green fluorescent protein (GFP). Gene 173: 33-38. https://doi.org/10.1016/0378-1119(95)00685-0
- Evans, T. C. Jr., J. Benner, and M. Q. Xu. 1999. The cyclization and polymerization of bacterially expressed proteins using modified self-splicing inteins. J. Biol. Chem. 274: 18359-18363. https://doi.org/10.1074/jbc.274.26.18359
- Evans, T. C. Jr., D. Martin, R. Kolly, D. Panne, L. Sun, I. Ghosh, et al. 2000. Protein trans-splicing and cyclization by a naturally split intein from the dnaE gene of Synechocystis species PCC6803. J. Biol. Chem. 275: 9091-9094. https://doi.org/10.1074/jbc.275.13.9091
- Grantcharova, V. P. and D. Baker. 2001. Circularization changes the folding transition state of the src SH3 domain. J. Mol. Biol. 306: 555-563. https://doi.org/10.1006/jmbi.2000.4352
- Grantcharova, V. P., D. S. Riddle, and D. Baker. 2000. Longrange order in the src SH3 folding transition state. Proc. Natl. Acad. Sci. U.S.A. 97: 7084-7089. https://doi.org/10.1073/pnas.97.13.7084
- Hofmann, A., H. Iwai, S. Hess, A. Pluckthun, and A. Wlodawer. 2002. Structure of cyclized green fluorescent protein. Acta Crystallogr. D Biol. Crystallogr. 58: 1400-1406. https://doi.org/10.1107/S0907444902010454
- Hruby, V. J. 1982. Conformational restrictions of biologically active peptides via amino acid side chain groups. Life Sci. 31: 189-199. https://doi.org/10.1016/0024-3205(82)90578-1
- Iwai, H., A. Lingel, and A. Pluckthun. 2001. Cyclic green fluorescent protein produced in vivo using an artificially split PI-PfuI intein from Pyrococcus furiosus. J. Biol. Chem. 276: 16548-16554. https://doi.org/10.1074/jbc.M011639200
- Iwai, H. and A. Pluckthun. 1999. Circular beta-lactamase: Stability enhancement by cyclizing the backbone. FEBS Lett. 459: 166-172. https://doi.org/10.1016/S0014-5793(99)01220-X
- Jeffries, C. M., S. C. Graham, P. H. Stokes, C. A. Collyer, J. M. Guss, and J. M. Matthews. 2006. Stabilization of a binary protein complex by intein-mediated cyclization. Protein Sci. 15: 2612-2618. https://doi.org/10.1110/ps.062377006
- Jermutus, L., M. Tessier, L. Pasamontes, A. P. van Loon, and M. Lehmann. 2001. Structure-based chimeric enzymes as an alternative to directed enzyme evolution: Phytase as a test case. J. Biotechnol. 85: 15-24. https://doi.org/10.1016/S0168-1656(00)00373-4
- Kanno, A., Y. Yamanaka, H. Hirano, Y. Umezawa, and T. Ozawa. 2007. Cyclic luciferase for real-time sensing of caspase 3 activities in living mammals. Angew. Chem. Int. Ed. Engl. 46: 7595-7599. https://doi.org/10.1002/anie.200700538
- Lehmann, M., C. Loch, A. Middendorf, D. Studer, S. F. Lassen, L. Pasamontes, A. P. van Loon, and M. Wyss. 2002. The consensus concept for thermostability engineering of proteins: Further proof of concept. Protein Eng. 15: 403-411. https://doi.org/10.1093/protein/15.5.403
- Lehmann, M., R. Lopez-Ulibarri, C. Loch, C. Viarouge, M. Wyss, and A. P. van Loon. 2000. Exchanging the active site between phytases for altering the functional properties of the enzyme. Protein Sci. 9: 1866-1872. https://doi.org/10.1110/ps.9.10.1866
- Lehmann, M., L. Pasamontes, S. F. Lassen, and M. Wyss. 2000. The consensus concept for thermostability engineering of proteins. Biochim. Biophys. Acta 1543: 408-415. https://doi.org/10.1016/S0167-4838(00)00238-7
- Otzen, D. E. and A. R. Fersht. 1998. Folding of circular and permuted chymotrypsin inhibitor 2: Retention of the folding nucleus. Biochemistry 37: 8139-8146. https://doi.org/10.1021/bi980250g
- Rodriguez, E., Z. A. Wood, P. A. Karplus, and X. G. Lei. 2000. Site-directed mutagenesis improves catalytic efficiency and thermostability of Escherichia coli pH 2.5 acid phosphatase/phytase expressed in Pichia pastoris. Arch. Biochem. Biophys. 382: 105-112. https://doi.org/10.1006/abbi.2000.2021
- Scott, C. P., E. Abel-Santos, M. Wall, D. C. Wahnon, and S. J. Benkovic. 1999. Production of cyclic peptides and proteins in vivo. Proc. Natl. Acad. Sci. U.S.A. 96: 13638-13643. https://doi.org/10.1073/pnas.96.24.13638
- Siebold, C. and B. Erni. 2002. Intein-mediated cyclization of a soluble and a membrane protein in vivo: Function and stability. Biophys. Chem. 96: 163-171. https://doi.org/10.1016/S0301-4622(02)00012-1
- Thornton, J. M. and B. L. Sibanda. 1983. Amino and carboxyterminal regions in globular proteins. J. Mol. Biol. 167: 443-460. https://doi.org/10.1016/S0022-2836(83)80344-1
- Trabi, M. and D. J. Craik. 2002. Circular proteins - no end in sight. Trends Biochem. Sci. 27: 132-138. https://doi.org/10.1016/S0968-0004(02)02057-1
- Williams, N. K., E. Liepinsh, S. J. Watt, P. Prosselkov, J. M. Matthews, P. Attard, J. L. Beck, N. E. Dixon, and G. Otting. 2005. Stabilization of native protein fold by intein-mediated covalent cyclization. J. Mol. Biol. 346: 1095-1108. https://doi.org/10.1016/j.jmb.2004.12.037
- Williams, N. K., P. Prosselkov, E. Liepinsh, I. Line, A. Sharipo, D. R. Littler, P. M. Curmi, G. Otting, and N. E. Dixon. 2002. In vivo protein cyclization promoted by a circularly permuted Synechocystis sp. PCC6803 DnaB mini-intein. J. Biol. Chem. 277: 7790-7798. https://doi.org/10.1074/jbc.M110303200
- Wu, H., Z. Hu, and X. Q. Liu. 1998. Protein trans-splicing by a split intein encoded in a split DnaE gene of Synechocystis sp. PCC6803. Proc. Natl. Acad. Sci. U.S.A. 95: 9226-9231. https://doi.org/10.1073/pnas.95.16.9226
- Xu, M. Q. and T. C. Jr. Evans. 2001. Intein-mediated ligation and cyclization of expressed proteins. Methods 24: 257-277. https://doi.org/10.1006/meth.2001.1187
- Zhao, Z., W. Lu, B. Dun, D. Jin, S. Ping, W. Zhang, M. Chen, M. Q. Xu, and M. Lin. 2008. Purification of green fluorescent protein using a two-intein system. Appl. Microbiol. Biotechnol. 77: 1175-1180. https://doi.org/10.1007/s00253-007-1233-0
Cited by
- Engineering of Metabolic Pathways by Artificial Enzyme Channels vol.3, pp.None, 2010, https://doi.org/10.3389/fbioe.2015.00168
- Backbone circularization of Bacillus subtilis family 11 xylanase increases its thermostability and its resistance against aggregation vol.11, pp.12, 2010, https://doi.org/10.1039/c5mb00341e
- Locked and proteolysis-based transcription activator-like effector (TALE) regulation vol.44, pp.3, 2010, https://doi.org/10.1093/nar/gkv1541
- Intein-mediated backbone cyclization of VP1 protein enhanced protection of CVB3-induced viral myocarditis vol.7, pp.None, 2017, https://doi.org/10.1038/srep41485
- Intein-mediated backbone cyclization of entolimod confers enhanced radioprotective activity in mouse models vol.6, pp.None, 2010, https://doi.org/10.7717/peerj.5043
- Metabolic engineering of Parageobacillus thermoglucosidasius for the efficient production of (2R, 3R)-butanediol vol.104, pp.10, 2020, https://doi.org/10.1007/s00253-020-10553-8
- Designed Streptococcus pyogenes Sortase A Accepts Branched Amines as Nucleophiles in Sortagging vol.31, pp.11, 2020, https://doi.org/10.1021/acs.bioconjchem.0c00486
- Development of End-Spliced Dimeric Nanodiscs for the Improved Virucidal Activity of a Nanoperforator vol.13, pp.31, 2010, https://doi.org/10.1021/acsami.1c06364