DOI QR코드

DOI QR Code

AFM을 이용한 나노 패턴 형성과 크기에 따른 광특성 시뮬레이션

Simulations of Optical Characteristics according to the Silicon Oxide Pattern Distance Variation using an Atomic Force Microscopy (AFM)

  • 황민영 (광운대학교 전자재료공학과) ;
  • 문경숙 (경원대학교 수학정보학과) ;
  • 구상모 (광운대학교 전자재료공학과)
  • Hwang, Min-Young (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Moon, Kyoung-Sook (Department of Mathematics and Information, Kyungwon University) ;
  • Koo, Sang-Mo (Department of Electronic Materials Engineering, Kwangwoon University)
  • 투고 : 2010.04.14
  • 심사 : 2010.05.11
  • 발행 : 2010.06.01

초록

We report a top-down approach based on atomic force microscopy (AFM) local anodic oxidation for the fabrication of the nano-pattern field effect transistors (FETs). AFM anodic oxidation is relatively a simple process in atmosphere at room temperature but it still can result in patterns with a high spatial resolution, and compatibility with conventional silicon CMOS process. In this work, we study nano-pattern FETs for various cross-bar distance value D, from ${\sim}0.5\;{\mu}m$ to $1\;{\mu}m$. We compare the optical characteristics of the patterned FETs and of the reference FETs based on both 2-dimensional simulation and experimental results for the wavelength from 100 nm to 900 nm. The simulated the drain current of the nano-patterned FETs shows significantly higher value incident the reference FETs from ${\sim}1.7\;{\times}\;10^{-6}A$ to ${\sim}2.3\;{\times}\;10^{-6}A$ in the infrared range. The fabricated surface texturing of photo-transistors may be applied for high-efficiency photovoltaic devices.

키워드

참고문헌

  1. N. Elfstrom, A. E. Karlstrom, and J. Linnros, Nano. Lett. 8, 3 (2008).
  2. M. Skupinski, J. Jensen, A. Johansson, G. Possnert, M. Boman, K. Hjort, and A. Razpet, J. Vac. Sci. Technol. B 25, 3 (2007).
  3. Y. Cao, S. Ding, T. Sun, Y. Yan, and Q. Zhao, J. Vac. Sci. Technol. B 27, 3 (2009).
  4. S. Gwo, T. Yasuda, and S. Yamasaki, J. Vac. Sci. Technol. A 19, 4 (2001).
  5. E. S. Snow, W. H. Juan, S. W. Pang, and P. M. Cambel, Appl. Phys. Lett. 66, 1792 (1995).
  6. S. Masubuchi, M. Ono, K. Yoshida, K. Hirakawa, and T. Machida, Appl. Phys. Lett. 94, 082107 (2009). https://doi.org/10.1063/1.3089693
  7. D. Stievenard and B. Legrand, Progress in surf. Sci. 81, 112 (2006). https://doi.org/10.1016/j.progsurf.2006.01.003
  8. D. Stevenard, P. A. Fontaine, and E. Dubois, Appl. Phys. Lett. 70, 20 (1997).
  9. SILVACO International, ATLAS User's Manual, Version 5.12.0.R. USA, SILVACO International Incorporated, pp. 1-898, 2007.