DOI QR코드

DOI QR Code

Transient Elastodynamic Mode III Crack Growth in Functionally Graded Materials

함수구배재료에서 천이탄성동적모드 III 균열전파

  • Lee, Kwang-Ho (Dept. of Mechanical and Automotive Engineering, Kyungpook Nat'l Univ.)
  • 이광호 (경북대학교 기계자동차공학부)
  • Received : 2010.01.05
  • Accepted : 2010.05.24
  • Published : 2010.07.01

Abstract

A generalized elastic solution for a transient mode III crack propagating along the gradient in functionally graded materials (FGMs) is obtained through an asymptotic analysis. The shear modulus and density of the FGMs are assumed to vary exponentially along the gradient. The stress and displacement fields near the crack tip are obtained in terms of powers of radial coordinates, and the coefficients depend on the time rates of the change of the crack tip speed and stress intensity factors. The influence of nonhomogeneity and transients on the higher order terms of the stress and displacement fields is discussed.

함수구배재료에서 구배방향을 따라 전파하는 천이모드 III 균열에 대한 일반적인 탄성해를 근접해법으로 얻었다. 함수구배재료의 전단계수 및 밀도는 구배방향을 따라 지수형적으로 변화한다고 가정하였다. 균열선단의 응력과 변위장은 응력확대계수 및 균열선단속도의 시간변화율에 의존하는 계수들을 갖는 방사상 좌표계의 누승으로 얻었다. 비균질성과 천이계수들이 응력 및 변위장의 고차항에 미치는 영향에 대하여 토론하였다.

Keywords

References

  1. Niino, A. and Maeda, S., 1990, “Recent Developmentstatus of Functionally Gradient Materials,” ISIJ Int.,Vol. 30, pp. 699-703. https://doi.org/10.2355/isijinternational.30.699
  2. Zhang L. M., Liu, J, Yuan R. Z. and Hirai T., 1995,“Properties of TiC-Ni3Al Composites and StructuralOptimization of TiC-Ni3Al Functionally GradientMaterials,” Mat. Sci. and Eng. A, Vol. 203, pp.272-277. https://doi.org/10.1016/0921-5093(95)09823-2
  3. Chen, E. S. C., 1999, “Army Focused Research Teamon Functionally Graded Armor Composites,” Mat. Sci.Eng. A, Vol. 259, pp. 155-161. https://doi.org/10.1016/S0921-5093(98)00883-1
  4. Wang, Y. W., Wang, F. C., Yu, X. D. and Ma, Z.,2007, “Research Advancement on Graded Ceramic-Metal Armor Composites,” Binggong Xuebao/ActaArmamentarii, Vol. 28 (2), pp. 209-214.
  5. Pompea, W., Worch, H., Epple, M., Friess , W.,Gelinsky, M., Greil, P., Hempele, U., Charnweber,D. and Schulte, K., 2003, “Functionally GradedMaterials for Biomedical Applications,” Mat. Sci.Eng. A, Vol. 362, pp. 40-60. https://doi.org/10.1016/S0921-5093(03)00580-X
  6. Watari, F., Yokoyama, A., Omori, M., Hirai, T.,Kondo, H., Uo, M. and Kawasaki, T., 2004,“Biocompatibility of Materials and Development toFunctionally Graded Implant for Bio-MedicalApplication,” Com. Sci. Tech., Vol. 64, pp. 893-908. https://doi.org/10.1016/j.compscitech.2003.09.005
  7. Delale, F. and Erdogan, F, 1983, “The Crack Problemfor a Nonhomogeneous Plane,” ASME J. Appl. Mech.,Vol. 50, pp. 609-614. https://doi.org/10.1115/1.3167098
  8. Eischen, J. W. , 1987, “Fracture of NonhomogeneousMaterials,” Int. J. Fract., Vol. 34(1), pp. 3-22.
  9. Konda, N., Erdogan, F., 1994, “The Mixed ModeCrack Problem in a Nonhomogeneous Elastic Plane,”Engng. Fract. Mech , Vol. 47, pp. 533-545. https://doi.org/10.1016/0013-7944(94)90253-4
  10. Jin, Z. H. and Batra, R. C., 1996, “Some BasicFracture Mechanics Concepts in Functionally GradedMaterials,” J. Mech. Phys. Solids, Vol. 44(8) pp.1221-1235. https://doi.org/10.1016/0022-5096(96)00041-5
  11. Atkinson, C., 1975 , “Some Results on CrackPropagation in Media with Spatially Varying ElasticModuli,” Int. J. Fract., Vol. 11 (4), pp. 619-628. https://doi.org/10.1007/BF00116369
  12. Jiang, L. Y. and Wang, X. D., 2002, “On theDynamic Crack Propagation in an Interphase withSpatially Varying Elastic Properties Under InplaneLoading,” Int. J. Fract., Vol. 114, pp. 225-244. https://doi.org/10.1023/A:1015529931715
  13. Ma, L., Wi, L.Z., Guo, L. C., and Zhou, Z. G., 2005“On the Moving Griffith Crack in a Non-Homogeneous Orthotropic Medium,” Euro. J. Mech.A/Solids, Vol. 24, pp. 393-405. https://doi.org/10.1016/j.euromechsol.2005.02.003
  14. Lee, K. H., 2009, “Analysis of a Propagating Crackin Functionally Gradient Materials with PropertyVariation Angled to Crack Direction,” ComputationalMaterials Science., Vol. 45, pp. 941-950. https://doi.org/10.1016/j.commatsci.2008.12.016
  15. Tsi, Y. M., 1973, “Propagation of Brittle Crack atConstant and Accelerating Speeds,” Int. J. Solids andStruct , Vol. 9, pp. 625-642. https://doi.org/10.1016/0020-7683(73)90075-9
  16. Kostrov, B. V., 1975, “ On the Crack Propagationwith Variable Velocity,” Int. J. Fract., Vol. 11, pp.47-56. https://doi.org/10.1007/BF00034712
  17. Freund, L. B., 1990, “Dynamic Fracture Mechanics.Cambrage,” Cambridge University Press.
  18. Nishioka, T., 1997, “Computational DynamicFracture Mechanics,” Int. J. Fract., Vol. 86, pp.127-159. https://doi.org/10.1023/A:1007376924191
  19. Lee, K. H., Lee, Y. J. and Cho, S. B., 2009,“Characteristics of a Transiently Propagating Crack inFunctionally Graded Materials,” JMST, Vol. 23, pp.1306-1322.
  20. Lee, K. H., 2009, “Analysis of a TransientlyPropagating Crack in Functionally Graded MaterialsUnder Mode I and II,” Int. J. Eng. Sci., Vol. 47, pp.852-865. https://doi.org/10.1016/j.ijengsci.2009.05.004

Cited by

  1. Analysis of Unsteady Propagation of Mode III Crack in Arbitrary Direction in Functionally Graded Materials vol.39, pp.2, 2015, https://doi.org/10.3795/KSME-A.2015.39.2.143