인체이식용 무세포 진피 제조를 위한 바이러스 불활화 공정

Virus Inactivation Processes for the Manufacture of Human Acellular Dermal Matrix

  • 배정은 (한남대학교 생명.나노과학대학 생명과학과 & 바이오의약품안전성검증센터) ;
  • 김진영 (한스바이오메드(주) 한스대덕연구소) ;
  • 안재형 (한스바이오메드(주) 한스대덕연구소) ;
  • 최다미 (한스바이오메드(주) 한스대덕연구소) ;
  • 정효선 (한스바이오메드(주) 한스대덕연구소) ;
  • 이동혁 (한남대학교 생명.나노과학대학 생명과학과 & 바이오의약품안전성검증센터) ;
  • 김인섭 (한남대학교 생명.나노과학대학 생명과학과 & 바이오의약품안전성검증센터)
  • Bae, Jung-Eun (Department of Biological Sciences & Center for Biopharmaceuticals Safety validation, Hannam University) ;
  • Kim, Jin-Young (Hans Biomed Corporation) ;
  • Ahn, Jae-Hyoung (Hans Biomed Corporation) ;
  • Choi, Da-Mi (Hans Biomed Corporation) ;
  • Jeong, Hyo-Sun (Hans Biomed Corporation) ;
  • Lee, Dong-Hyuck (Department of Biological Sciences & Center for Biopharmaceuticals Safety validation, Hannam University) ;
  • Kim, In-Seop (Department of Biological Sciences & Center for Biopharmaceuticals Safety validation, Hannam University)
  • 투고 : 2010.04.13
  • 심사 : 2010.06.16
  • 발행 : 2010.06.28

초록

사체 피부에서 면역반응을 일으킬 수 있는 세포들을 제거한 무세포 진피는 다양한 의료용 소재로 사용되고 있다. Trin-butyl phospahate(TnBP)와 deoxycholic acids를 세포제거 용액으로 사용하여 피부조직 내 진피층의 3차원적 구조를 손상시키지 않고 다양한 구조 단백질 및 성분들을 유지한 상태에서 면역반응의 대상인 세포성 항원만을 선별적으로 제거한 이식용 동종 무세포 진피인 $SureDerm^{TM}$을 개발하였다. $SureDerm^{TM}$ 제조공정은 감염성 위해인자 불활화 공정으로 70% 에탄올 처리와 산화에틸렌 가스 처리 공정을 포함하고 있다. 본 연구에서는 SureDermTM 제조공정 중 70% 에탄올 소독 공정, 세포제거용액(0.1% TnBP와 2% deoxycholic acids) 처리 공정, 산화에틸렌 가스 멸균의 바이러스 불활화 효과를 검증하기 위해 국제적 가이드에 따라 5종의 바이러스 [human immunodeficiency virus type 1(HIV-1), bovine herpes virus(BHV), Bovine viral diarrhoea virus(BVDV), hepatitis A virus(HAV), porcine parvovirus(PPV)]를 생물학적 지표로 사용하였다. 피부조직에 각 생물학적 지표를 첨가한 후 불활화 공정을 실시한 다음 각 바이러스를 회수하여 정량한 후 불활화 정도를 비교하였다. 70% 에탄올 20분처리 공정에서 HIV-1, BHV, BVDV 같은 외피 바이러스는 처리 시간 2.5분 안에 불활화되었지만, HAV와 PPV 같은 비-외피 바이러스는 에탄올에 저항성을 나타내어 20분 처리 후 log 바이러스 감소인수가 각각 1.85와 1.15였다. 세포제거용액 처리 공정에서 HIV-1, BHV, BVDV는 각각 5분, 30분, 5분 안에 검출한계 이하로 불활화되었다. 산화에틸렌 가스처리에 의해 본 연구에 사용한 모든 바이러스가 검출한계 이하로 불활화되었다. 3가지 공정에서 HIV-1, BHV, BVDV, HAV, PPV에 대한 log 바이러스 감소인수 합은 각각 $\geq12.71$, $\geq18.08$, $\geq14.92$, $\geq6.57$, $\geq7.18$이었다. 이와 같은 결과에서 $SureDerm^{TM}$ 제조공정은 바이러스 안전성을 보증할 수 있는 충분한 바이러스 불활화 능력을 갖고 있는 것으로 판단된다.

Acellular dermal matrix (ADM), produced by decellularization from human cadaveric skin, has been used for various biomedical applications. A manufacturing process for ADM ($SureDerm^{TM}$) using tri-n-butyl phospahate (TnBP) and deoxycholic acids as the decellularization solution has been developed. The manufacturing process for $SureDerm^{TM}$ has 70% ethanol treatment and ethylene oxide gas sterilization for inactivating infectious microorganisms. The purpose of this study was to examine the efficacy of the 70% ethanol treatment, decellularization process using 0.1% TnBP and 2% deoxycholic acids, and EO gas sterilization process in the inactivation of viruses. A variety of experimental model viruses for human pathogens, including the human immunodeficiency virus type 1 (HIV-1), bovine herpes virus (BHV), bovine viral diarrhoea virus (BVDV), hepatitis A virus (HAV), and porcine parvovirus (PPV) were all selected for this study. Enveloped viruses such as HIV-1, BHV, and BVDV were effectively inactivated to undetectable levels by 70% ethanol treatment. However HAV and PPV showed high resistance to 70% ethanol treatment with the log reduction factors of 1.85 and 1.15, respectively. HIV-1, BHV, and BVDV were effectively inactivated to undetectable levels by decellularization process. All the viruses tested were completely inactivated to undetectable levels by EO gas treatment. The cumulative log reduction factors of HIV-1, BHV, BVDV, HAV, and PPV were $\geq12.71$, $\geq18.08$, $\geq14.92$, $\geq6.57$, and $\geq7.18$, respectively. These results indicate that the production process for $SureDerm^{TM}$ has a sufficient virus-reducing capacity to achieve a high margin of the virus safety.

키워드

참고문헌

  1. Altman, A. M., N. Matthias, Y. Yan, Y. H. Song, X. Bai, E. S. Chiu, D. P. Slakey, and E. U. Alt. 2008. Dermal matrix as a carrier for in vivo delivery of human adipose-derived stem cells. Biomaterials 29: 1431-1442. https://doi.org/10.1016/j.biomaterials.2007.11.026
  2. Biswas, S., P. Suresh, R. E. Bonshek, G. Corbitt, A. B. Tullo, and A. E. A Ridgway. 2000. Graft failure in human donor corneas due totransmission of herpes simplex virus. Br. J. Ophthalmol. 84: 701-705. https://doi.org/10.1136/bjo.84.7.701
  3. Bjarne, B. and F. Alsbjrn. 1992. Biologic wound coverings in burn treatment. World J. Surg. 16: 43-46. https://doi.org/10.1007/BF02067113
  4. Burnouf, T. and M. Radosevich. 2000. Reducing the risk of infection from plasma products: specific preventative strategies. Blood Rev. 4: 94-110.
  5. Carlson E. R., R. E Marx, and B. E. Buck. 1995. The potential for HIV transmission through allogeneic bone. A review of risks and safety. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 80: 17-23. https://doi.org/10.1016/S1079-2104(95)80010-7
  6. Chan, B. P., I. E. Kochevar, and W. Robert. 2002. Redmond enhancement of porcine skin graft adherence using a lightactivated process. J. Surg. Res. 108: 77-84. https://doi.org/10.1006/jsre.2002.6516
  7. Chaplin, J. M., P. D. Costantino, M. E. Wolpoe, J. B. Bederson, E. S. Griffey, and W. X. Zhang. 1999. Use of an acellular dermal allograft for dural replacement: an experimental study. Neurosurg. 45: 320-327. https://doi.org/10.1097/00006123-199908000-00025
  8. Chen, R.-N., H.-O. Ho, Y.-T. Tsai, and M.-T. Sheu. 2004. Process development of an acellular dermal matrix (ADM) for biomedical applications. Biomaterials 25: 2679-2686. https://doi.org/10.1016/j.biomaterials.2003.09.070
  9. Chester, D. L. and R. P. G Papini. 2004. Skin and skin substitutes in burn management. Trauma 6: 87-99. https://doi.org/10.1191/1460408604ta303oa
  10. Chiu, T. and M. Shah. 2002. Porcine xenograft dressing for facial burns: beware of the mesh imprint. Burns 28: 279–282. https://doi.org/10.1016/S0305-4179(02)00009-8
  11. Choi, Y. W. and I. S. Kim. 2008. Viral clearance during the manufacture of urokinase from human urine. Biotechnol. Bioprocess Eng. 13: 25-32. https://doi.org/10.1007/s12257-007-0140-7
  12. Denda, M. 2000. Skin barrier function as a self-organizing system. Forma 15: 227-232.
  13. Dichtelmüller, H. O., L. Biesert, F. Fabbrizzi, R. Gajardo, A. Gröner, I. von Hoegen, J. I. Jorquera, C. Kempf, T. R. Kreil, D. Pifat, W. Osheroff, and G. Poelsler. 2009. Robustness of solvent/detergent treatment of plasma derivatives: a data collection from plasma protein therapeutics association member companies. Transfusion 49: 1931-1943. https://doi.org/10.1111/j.1537-2995.2009.02222.x
  14. Eastlund, T. 1995. Infectious disease transmission through cell, tissue, and organ transplantation: reducing the risk through donor selection. Cell Transplant. 4: 455-477. https://doi.org/10.1016/0963-6897(95)00035-V
  15. Fischer, G., W. K. Hoots, and C. Abrams. 2001. Viral reduction techniques: types and purpose. Transfus. Med. Rev. 15(Suppl 1): 27-39.
  16. Hornicek, F. J., J. E. Woll, and D. Kasprisin. 2002. Standards for tissue banking, pp. 31-45. American Association of Tissue Banks, Bethesda, Maryland, USA.
  17. Immelmann, A., K. Kellings, O. Stamm, and K. Tarrach. 2005. Validation and quality procedures for virua and prion removal in biopharmaceuticals. BioProcess Int. 3: 38-44.
  18. International organization for standardization. 1994. Medical devices-Validation and routine control of ethylene oxide sterilization. Geneva, Switzerland.
  19. International organization for standardization. 1998. Sterilization of medical devices-Microbiological methods. Part 2: Test of sterility performed in the validation of a sterilization process. Geneva, Switzerland.
  20. Karber, J. 1931. Beitrag zur kollectiven behandlung pharmakologische reihenversuche. Arch. Exp. Path. Pharmak. 162: 480-483. https://doi.org/10.1007/BF01863914
  21. Kim, I. S., J. E. Bae, H. M. Sung, Y. Kang, and Y. W. Choi. 2009. Removal and inactivation of viruses during the manufacture of a high-purity antihemophilic factor IX from human plasma. Biotechnol. Bioprocess Eng. 14: 716-724. https://doi.org/10.1007/s12257-009-0167-z
  22. Kim, I. S., Y. W. Choi, Y. Kang, H. M. Sung, K. W Sohn, and Y.-S. Kim. 2008. Improvement of virus safety of an antihemophilic factor IX by virus filtration process. J. Microbiol. Biotechnol. 18: 1317-1325.
  23. Kim, I. S., Y. W. Choi, Y. Kang, H. M. Sung, K. W. Sohn, and J. S. Shin. 2008. Dry-heat treatment process for enhancing viral safety of an antihemophilic factor VIII concentrate prepared from human plasma. J. Microbiol. Biotechnol. 18: 997-1003.
  24. Lavanchy, D. 2008. Hepatitis B virus transmission in organ, tissue, and cell transplantation. Gastroenterol. 135: 1041-1043. https://doi.org/10.1053/j.gastro.2008.08.028
  25. Lee, K. C., N. H. Lee, J. H. Ban, and S. M. Jin. 2008. Surgical treatment using an allograft dermal matrix for nasal septal perforation. Yonsei Med. J. 49: 244-248. https://doi.org/10.3349/ymj.2008.49.2.244
  26. Lineen, E. and N. Namias. 2008. Biologic dressing in burns. J. Craniofac. Surg. 19: 923-928. https://doi.org/10.1097/SCS.0b013e318175b5ab
  27. Livesy, S. A., D. N. Herndon, M. A. Hollyoak, Y. H. Atkinson, and A. Nag. 1995. Transplanted acellular allograft dermal matrix. Potential for the reconstruction of viable dermis. Transplantation 60: 1-9. https://doi.org/10.1097/00007890-199507150-00001
  28. Maillard, J. Y. and A. D. Russell. 1997. Virucidal activity and mechanism of action of biocides. Sci. Prog. 30: 287-315.
  29. Matoukova, E., P. Stehlíek, and P. Vesely. 2002. Acellular porcine xenodermis as a temporary wound cover and substratum for cultured keratinocytes. Eur. Cells Mater. 4: 83-85.
  30. McDonnell, G. and A. D. Russell. 1999. Antiseptics and disinfectants: activity, action, and resistance. Clin. Microbiol. Rev. 12: 147-179.
  31. McDonnell, G. E. 2007. Antisepsis, disinfection, and sterilization, pp. 191-197. ASM Press, American Society for Microbiology, Washington D. C., USA.
  32. McDonnell, G. E. 2007. Antisepsis, disinfection, and sterilization, pp. 32-54. ASM Press, American Society for Microbiology, Washington D. C., USA.
  33. Qaryoute, S., I. Mirdad, and A. A. Hamail. 2001. Usage of autograft and allograft skin in treatment of burns in children. Burns 27: 599-602. https://doi.org/10.1016/S0305-4179(00)00152-2
  34. Sclafani, A. P., T. Romo, A. A. Jacono, S. McCormick, R. Cocker, and A. Parker. 2000. Evaluation of acellular dermal graft in sheet (AlloDerm) and injectable (micronized AlloDerm) forms for soft tissue augmentation. Clinical observations and histological analysis. Arch. Facial Plast. Surg. 2: 130-136. https://doi.org/10.1001/archfaci.2.2.130
  35. Takami, Y., T. Matsuda, M. Yoshitake, M. Hanumadass, and R. J. Walter. 1996. Dispase/detergent treated dermal matrix as a dermal substitur. Burn 22: 182-190. https://doi.org/10.1016/0305-4179(95)00123-9
  36. Van Baare J., E. E. Ligtvoet, and E. Middelkoop. 1998. Microbiological evaluation of glycerolized cadaveric donor skin. Transplant. 65: 966-970. https://doi.org/10.1097/00007890-199804150-00017
  37. Wainwright, D. J. 1995. Use of an acellular allograft dermal matrix (Alloderm) in the management of full-thickness burns. Burns 21: 243-248. https://doi.org/10.1016/0305-4179(95)93866-I
  38. Walter, R. J., T. Matsuda, H. M. Reyes, J. M. Walter, and M. Hanumadass. 1998. Characterization of acellular dermal matrix (ADMs) prepared by two different methods. Burns 24: 104-113. https://doi.org/10.1016/S0305-4179(97)00110-1
  39. Wang, S., C. Zinderman, R. Wise, and M. Braun. 2007. Infections and human tissue transplants: review of FDA MedWatch reports 2001-2004. Cell Tissue Bank. 8: 211-219. https://doi.org/10.1007/s10561-007-9034-3