DOI QR코드

DOI QR Code

ON GENERALIZED λδs-SETS AND RELATED TOPICS OPOLOGY

  • Caldas, Miguel (DEPARTAMENTO DE MATEMATICA APLICADA UNIVERSIDADE FEDERAL FLUMINENSE) ;
  • Hatir, Esref (EGITIM FAKULTESI SELCUK UNIVERSITESI) ;
  • Jafari, Saeid (DEPARTMENT OF ECONOMICS UNIVERSITY OF COPENHAGEN)
  • Received : 2008.04.29
  • Published : 2010.07.01

Abstract

In this paper, we define and study the concept of $\wedge^s_{\delta}$-closure operator and the associated topology $\tau^{\wedge}^s_{\delta}$ on a topological space (X, $\tau$) in terms of g.$\wedge^s_{\delta}$-sets.

Keywords

References

  1. P. Alexandroff, Diskrete Raume, Mat. Sb. 2 (1937), 501-519. https://doi.org/10.1070/SM1967v002n04ABEH002351
  2. M. Caldas, D. N. Georgiou, S. Jafari, and T. Noiri, More on ${\delta}$-semiopen sets, Note Mat. 22 (2003/04), no. 2, 113-126.
  3. M. Caldas, M. Ganster, D. N. Georgiou, S. Jafari, and S. P. Moshokoa, ${\delta}$-semiopen sets in topology, Topology Proc. 29 (2005), no. 2, 369-383.
  4. N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36-41. https://doi.org/10.2307/2312781
  5. H. Maki, Generalized ${\Lambda}$-sets and the associated closure operator, The special Issue in commemoration of Prof. Kazuada IKEDA's Retirement (1986), 139-146.
  6. J. H. Park, B. Y. Lee, and M. J. Son, On ${\delta}$-semiopen sets in topological space, J. Indian Acad. Math. 19 (1997), no. 1, 59-67.
  7. N. V. Velicko, H-closed topological spaces, Mat. Sb. (N.S.) 70 (112) (1966), 98-112.