모르타르 강도 증진을 위한 고분자 흡수제의 역유화 중합

Inverse Emulsion Polymerization of Water Absorbent Polymer for Strength Enhancement of Mortars

  • 투고 : 2010.04.13
  • 심사 : 2010.05.05
  • 발행 : 2010.09.25

초록

콘크리트 제조 시 사용되는 잉여수를 흡수하기 위하여 흡수성의 sodium polyacrylate(PAANa)를 역유화중합법으로 제조하였다. 연속상은 paraffin liquid를 사용하였으며 acrylic acid(AA)는 NaOH로 중화시켜 사용하였다. 가교제는 N,N'-methylene bisacrylamide(MBA)를 사용하였고 첨가량을 다르게 하여 중합을 실시하였다. 중합된 PAANa들의 입자크기 분석을 실시하고 이들이 탈이온수, 시멘트 포화수용액 및 $Ca(OH)_2$ 수용액에서의 팽윤비를 측정하였다. $Ca^{2+}$ 이온과 PAANa의 상호작용을 관찰하기 위하여 FTIR spectroscopy 분석을 실시하였다. 중합된 PAANa를 포틀랜드 시멘트에 1 wt% 혼합 후 시멘트 모르타르 공시체의 압축강도와 휨강도를 측정한 결과, AA에 대하여 0.15 mol%의 MBA를 첨가하여 중합한 PAANa를 첨가하여 제조한 PAANa-시멘트가 일반 포틀랜드 시멘트와 비교하여 압축강도 약 30% 및 휨강도 약 10%가 각각 증가함을 확인하였다.

Sodium polyacrylate (PAANa) was synthesized by inverse emulsion polymerization method to absorb excess water in concrete. Liquid paraffin was used as a continuous phase. Acrylic acid (AA) was neutralized by aqueous sodium hydroxide solution (8 M). Different amount of N,N'-methylene bisacrylamide (MBA) was used as a crosslinking agent to change crosslinking density of the synthesized PAANa. The size distribution of synthesized particles was measured by particle size analyzer. Swelling ratio of crosslinked PAANa was evaluated from the equation in D. I. water, cement aqueous solution, and $Ca(OH)_2$ aqueous solution. The FTIR spectroscopy was used to characterize $Ca^{2+}$ ion interaction with PAANa. Incorporation of 1.0 wt% PAANa into cement increased compressive and flexural strength approximately 30% and 10%, respectively, compared with those of ordinary portland cement.

키워드

참고문헌

  1. D. A. Williams, A. W. Saak, and H. M. Jennings, Cement Concrete Res., 29, 1491 (1999). https://doi.org/10.1016/S0008-8846(99)00124-6
  2. C. Y. Rha, J. W. Seong, C. E. Kim, S. K. Lee, and W. K. Kim, J. Math. Sci., 34, 4653 (1999). https://doi.org/10.1023/A:1004689711139
  3. C. Y. Rha, C. E. Kim, C. S. Lee, K. I. Kim, and S. K. Lee, Cement Concreate Res., 29, 231 (1999). https://doi.org/10.1016/S0008-8846(98)00186-0
  4. Y. Zhang, M. Deng, and P. He, Polymer(Korea), 30, 286 (2006).
  5. O. Sohn, S. J. Sim, D. H. Lee, Y. K. Lee, J.-H. Kim, and D. Kim, Polymer(Korea), 28, 18 (2004).
  6. J. Zhang and A. Wang, React. Funct. Polym., 67, 737 (2007). https://doi.org/10.1016/j.reactfunctpolym.2007.05.001
  7. P. J. Dowding and B. Vincent, Colloids Surf. A: Physicochem. Eng. Aspects, 161, 259 (2000). https://doi.org/10.1016/S0927-7757(99)00375-1
  8. W.-F. Lee and Y.-C. Chen, Eur. Polym. J., 41, 1605 (2005). https://doi.org/10.1016/j.eurpolymj.2005.02.011
  9. Y. Mylonas, G. Bokias, I. Iliopoulos, and G. Stakos, Eur. Polym. J., 42, 849 (2006). https://doi.org/10.1016/j.eurpolymj.2005.09.024
  10. M. Sadeghi and H. Hosseinzadeh, Turk. J. Chem., 32, 375 (2008).
  11. P. J. Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaca, NY., 1953.
  12. I. Ogawa, H. Yamano, and K. Miyagawa, J. Appl. Polym. Sci., 47, 217 (1993). https://doi.org/10.1002/app.1993.070470204
  13. Y.-D. Luo, C.-A. Dai, and W.-Y. Chiu, J. Col. Inter. Sci., 330, 170 (2009). https://doi.org/10.1016/j.jcis.2008.10.036
  14. A. Li, J. Zhang, and A. Wang, Polym. Adv. Tech., 16, 675 (2005). https://doi.org/10.1002/pat.641
  15. J. Snuparek and V. Cermark, Eur. Polym. J., 33, 1345 (1997). https://doi.org/10.1016/S0014-3057(96)00269-8
  16. N. V. Khoi, N. T. Tung, P. T. Ha, and T. D. Cong, Advances in Natural Sciences, 7, 85 (2006).
  17. S. Diamond, Concreate Res., 30, 1517 (2000). https://doi.org/10.1016/S0008-8846(00)00370-7
  18. B. Kriwet, E. Walter, and T. Kissel, J. Control. Release, 56, 149 (1998). https://doi.org/10.1016/S0168-3659(98)00078-9
  19. L. S. Park, Y. H. Lee, T. M. Baek, and J. J. Hwang, Polymer(Korea), 14, 583 (1990).
  20. A. Li, A. Wang, and J. Chen, J. Appl. Polym. Sci., 94, 1869 (2004). https://doi.org/10.1002/app.20850
  21. K. J. Lee, S. H. Byun, and J. T. Song, J. Korea Ceramic Society, 46, 657 (2009). https://doi.org/10.4191/KCERS.2009.46.6.657
  22. Y. Lu and J. D. Miller, J. Colloid Interface Sci., 256, 41 (2002). https://doi.org/10.1006/jcis.2001.8112
  23. S. Sindhu and S. Valiyaveettil, J. Polym. Sci. Part B: Polym. Phys., 42, 4459 (2004). https://doi.org/10.1002/polb.20301
  24. P. K. Meth and P. J. Monteiro, Concreat Microstructure, Properties, and Materials, 3rd edition, McGraw-Hill, NY., 2006.