참고문헌
- H. Baek, Dynamic complexites of a three-species Beddington-DeAngelis system with impulsive control strategy, Acta Appl. Math., 110(1)(2010), 23-38. https://doi.org/10.1007/s10440-008-9378-0
- H. Baek, A food chain system with Holling-type IV functional response and impulsive perturbations, Computers and Mathematics with Applications, 60(2010), 1152-1163. https://doi.org/10.1016/j.camwa.2010.05.039
- H. Baek, Dynamics of an impulsive food chain system with a Lotka-Volterra functional response , J. of the Korean Society for Industrial and Applied Mathematics, 12(3)(2008), 139-151.
- D.D. Bainov and P.S. Simeonov, Impulsive Differential Equations:asymptotic properties of the solutions, Singapore:World Scientific, 1993.
- J. B. Collings, The effects of the functional response on the bifurcation behavior of a mite predator-prey interaction model, J. Math. Biol., 36(1997), 149-168. https://doi.org/10.1007/s002850050095
- B. A. Croft, Arthropod biological control agents and pesicides. Wiley, New York (1990).
- J. M. Cushing, Periodic time-dependent predator-prey systems, SIAM J. Appl. Math. 32(1977), 82-95. https://doi.org/10.1137/0132006
- A. Donofrio, Stability properties of pulse vaccination strategy in SEIR epidemic model, Math. Biosci, 179(2002), 57-72. https://doi.org/10.1016/S0025-5564(02)00095-0
- A. El-Gohary and A. S. Al-Ruzaiza, Chaos and adaptive control in two prey, one predator system with nonlinear feedback, Chaos, Solitions and Fractals ,34(2007), 443-453. https://doi.org/10.1016/j.chaos.2006.03.101
- S. Gakkhar and R. K. Naji, Chaos in seasonally perturbed ratio-dependent prey-predator system, Chaos, Solitons and Fractals, 15(2003), 107-118. https://doi.org/10.1016/S0960-0779(02)00114-5
- S. Gakkhar and B. Singh, The dynamics of a food web consisting of two preys and a havesting predator, Chaos, Solitions and Fractals, 34(2007), 1346-1356. https://doi.org/10.1016/j.chaos.2006.04.067
- P. Georgescu and G. Morosanu, Impulsive perturbations of a three-trophic prey-dependent food chain system, Mathematical and Computer Modeling(2008), doi:10.1016/j.mcm.2007.12.006.
- M. P. Hassell, The dynamics of competition and predation. p.68. Arnod, London (1976).
- C. S. Holling, The functional response of predator to prey density and its role in mimicy and population regulatio. Mem. Entomol. Soc. Can., 45(1965), 1-60.
- S.-B. Hsu and T.-W. Huang, Global stability for a class of predator-prey systems, SIAM J. Appl. Math., 55(3)(1995), 763-783. https://doi.org/10.1137/S0036139993253201
- V Lakshmikantham, D. Bainov, P.Simeonov, Theory of Impulsive Differential Equations, World Scientific Publisher, Singapore, 1989.
- A. Lakmeche and O. Arino, Bifurcation of non trivial periodic solutions of impulsive differential equations arising chemotherapeutic treatment, Dynamics of Continuous, Discrete and Impulsive Systems, 7(2000), 265-287.
- B. Liu, Y. Zhang and L. Chen, Dynamic complexities in a Lotka-Volterra predator-prey model concerning impulsive control strategy, Int. J. of Bifur. and Chaos, 15(2)(2005), 517-531. https://doi.org/10.1142/S0218127405012338
- B. Liu, Z. Teng and L. Chen, Analsis of a predator-prey model with Holling II functional response concerning impulsive control strategy, J. of Comp. and Appl. Math., 193(1)(2006), 347-362 https://doi.org/10.1016/j.cam.2005.06.023
- X. Liu and L. Chen, Complex dynamics of Holling type II Lotka-Volterra predator-prey system with impulsive perturbations on the predator, Chaos, Solitons and Fractals, 16(2003), 311-320. https://doi.org/10.1016/S0960-0779(02)00408-3
- J. C. Panetta, A mathematical model of periodically pulsed chemotherapy: tumor recurrence and metastasis in a competitive environment, Bull. Math. Biol., 58(1996), 425-447. https://doi.org/10.1007/BF02460591
- M. Rafikov , J. M. Balthazar and H.F. von Bremen, Mathematical modeling and control of population systems: Applications in biological pest control, Appl. Math. Comput., 200(2008), 557-573. https://doi.org/10.1016/j.amc.2007.11.036
- S. Rinaldi ,S. Muratori S and YA. Kuznetsov Multiple attractors, catastrophes and chaos in seasonally perturbed predator-prey communities. Bull Math. Biol., 55(1993),15-35. https://doi.org/10.1007/BF02460293
- M. G. Roberts and R. R. Kao, The dynamics of an infectious disease in a population with birth purses, Math. Biosci., 149(1998), 23-36. https://doi.org/10.1016/S0025-5564(97)10016-5
- S. Ruan, D. Xiao, Global analysis in a predator-prey system with nonmonotonic functional response, SIAM J. Appl. Math, 61(2001), 1445-1472. https://doi.org/10.1137/S0036139999361896
- G. C. W. Sabin and D. Summers, Chaos in a periodically forced predator-prey ecosystem model, Math. Bioscience, 113(1993), 91-113. https://doi.org/10.1016/0025-5564(93)90010-8
- E, Saez and E. Gonzalez-Olivares, Dynamics of a predator-prey model, SIAM J. Appl. Math., 59(5)(1999), 1867-1878. https://doi.org/10.1137/S0036139997318457
- G.T.Skalski and J.F.Gilliam, Funtional responses with predator interference: viable alternatives to the Holling type II mode, Ecology, 82(2001), 3083-3092. https://doi.org/10.1890/0012-9658(2001)082[3083:FRWPIV]2.0.CO;2
- B. Shulgin, L. Stone and Z. Agur, Pulse vaccination strategy in the SIR epidemic model, Bull. Math. Biol., 60(1998), 1-26. https://doi.org/10.1006/bulm.1997.0010
- B. Shulgin, L. Stone and Z. Agur, Pulse vaccination strategy in the SIR epidemic model, Bull. Math. Biol., 60(1998), 1-26. https://doi.org/10.1006/bulm.1997.0010
- X. Song and Y. Li, Dynamic complexities of a Holling II two-prey one-predator system with impulsive effect, Chaos, Solitions and Fractals ,33(2007), 463-478. https://doi.org/10.1016/j.chaos.2006.01.019
- S.Y. Tang and L. Chen, Density-dependent birth rate, birth pulse and their population dynamic consequences, J. Math. Biol., 44(2002), 185-199. https://doi.org/10.1007/s002850100121
- S. Tang, Y. Xiao, L. Chen and R.A. Cheke, Integrated pest management models and their dynamical behaviour, Bulletin of Math. Biol., 67(2005), 115-135. https://doi.org/10.1016/j.bulm.2004.06.005
- W.B. Wang , J.H. Shen and J.J. Nieto, Permanence periodic solution of predator prey system with Holling type functional response and impulses, Discrete Dynamics in Nature and Society, 2007, Article ID 81756, 15 pages.
- W. Wang, H. Wang and Z. Li, The dynamic complexity of a three-species Beddington-type food chain with impulsive control strategy, Chaos, Solitons and Fractals, 32(2007), 1772-1785. https://doi.org/10.1016/j.chaos.2005.12.025
- W. Wang, H. Wang and Z. Li, Chaotic behavior of a three-species Beddington-type system with impulsive perturbations, Chaos Solitons and Fractals, 37(2008), 438-443. https://doi.org/10.1016/j.chaos.2006.09.013
- H. Zhang, L. Chen and J.J. Nieto, A delayed epidemic model with stage-structure and pulses for pest management strategy, Nonlinear Anal.:Real World Appl., 9(2008),1714-1726. https://doi.org/10.1016/j.nonrwa.2007.05.004
- S. Zhang and L. Chen, Chaos in three species food chain system with impulsive perturbations, Chaos Solitons and Fractals, 24(2005), 73-83.
- S. Zhang and L. Chen, A Holling II functional response food chain model with impulsive perturbations, Chaos Solitons and Fractals, 24(2005), 1269-1278. https://doi.org/10.1016/j.chaos.2004.09.051
- S. Zhang and L. Chen, A study of predator-prey models with the Beddington-DeAngelis functional response and impulsive effect, Chaos, Solitons and Fractals, 27(2006), 237-248. https://doi.org/10.1016/j.chaos.2005.03.039
- S. Zhang, F.Wang and L. Chen, A food chain model with impulsive perturbations and Holling IV functional response, Chaos, Solitons and Fractals, 26(2005), 855-866. https://doi.org/10.1016/j.chaos.2005.01.053
- S. Zhang, D. Tan and L. Chen, Dynamic complexities of a food chain model with impulsive perturbations and Beddington-DeAngelis functional response, Chaos Solitons and Fractals, 27(2006), 768-777. https://doi.org/10.1016/j.chaos.2005.04.047
- S. Zhang, D. Tan and L. Chen, Chaotic behavior of a periocically forced predator-prey system with Beddington-DeAngelis functional response and impulsive perturbations, Advances in complex Systems, 9(3)(2006), 209-222. https://doi.org/10.1142/S0219525906000811
- S. Zhang, L. Dong and L. Chen, The study of predator-prey system with defensive ability of prey and impulsive perturbations on the predator, Chaos, Solitons and Fractals, 23(2005), 631-643. https://doi.org/10.1016/j.chaos.2004.05.044
- Y. Zhang, B. Liu and L. Chen, Extinction and permanence of a two-prey one-predator system with impulsive effect, Mathematical Medicine and Biology, 20(2003), 309-325. https://doi.org/10.1093/imammb/20.4.309
- Y. Zhang, Z. Xiu and L. Chen, Dynamic complexity of a two-prey one-predator system with impulsive effect, Chaos Solitons and Fractals, 26(2005), 131-139. https://doi.org/10.1016/j.chaos.2004.12.037